首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Sorption and displacement of pyrene in soils and sediments   总被引:2,自引:0,他引:2  
Sorption isotherms of pyrene on soils and sediments were examined to understand its sorption behavior. All systems examined exhibited nonlinear sorption. Sorption nonlinearity was found to be a function of the polarity index of soil/sediment organic matter (SOM), suggesting that the degree of condensation of SOM, characterized by its polarity index, was correlated with the sorption behavior of pyrene. The polarity index of SOM could be a new factor for explaining the sorption nonlinearity. The sorption affinity of two soils and two sediments for pyrene increased with decreasing SOM polarity. A higher sorption affinity in the two soils was associated with a higher degree of condensation of SOM compared to that of the two sediments. A displacement test was performed after pyrene sorption using phenanthrene as a displacer. Pyrene was displaced in all systems examined, and nonlinearity became less pronounced after displacement. Such an increase in isotherm linearity implied that sorption site energies became more homogeneous after displacement. Furthermore, the site energy distribution IE*) derived from the Freundlich model parameters showed that energy reduction of high-energy sites was more significant than that of low-energy sites after displacement. In addition, a decrease in sorption capacity after displacement could be ascribed to the partial depletion of sorption sites by the displacer. The displacement data indicated that the cocontaminant can have potential effects on the fate and bioavailability of anthropogenic organic pollutants sorbed in soils and sediments, thus affecting their exposure risks.  相似文献   

2.
Natural Organic Matter (NOM) is a major sorbent for organic pollutants in soils and sediments. While sorption under oxic conditions has been well investigated, possible changes in the sorption capacity of a given NOM induced by reduction have not yet been studied. Reduction of quinones to hydroquinones, the major redox active moieties in NOM, increases the number of H-donor moieties and thus may affect sorption. This work compares the sorption of four nonionic organic pollutants of different polarities (naphthalene, acetophenone, quinoline, and 2-naphthol), and of the organocation paraquat to unreduced and electrochemically reduced Leonardite Humic Acid (LHA). The redox states of reduced and unreduced LHA in all sorption experiments were stable, as demonstrated by a spectrophotometric 2,6-dichlorophenol indophenol reduction assay. The sorption isotherms of the nonionic pollutants were highly linear, while paraquat sorption was strongly concentration dependent. LHA reduction did not result in significant changes in the sorption of all tested compounds, not even of the cationic paraquat at pH 7, 9, and 11. This work provides the first evidence that changes in NOM redox state do not largely affect organic pollutant sorption, suggesting that current sorption models are applicable both to unreduced and to reduced soil and sediment NOM.  相似文献   

3.
In both forest and agricultural soils, plant derived cuticular materials can constitute a significant part of soil organic matter. In this study, the sorption of nonpolar (naphthalene and phenanthrene) and polar (phenol and 1-naphthol) aromatic organic pollutants to aliphatic-rich cuticularfractions of green pepper (Capsicum annuum) (i.e., bulk (PC1), dewaxed (PC2), nonsaponifiable (PC3), nonsaponifiable-nonhydrolyzable (PC4), and dewaxed-hydrolyzed residue (PC5)) were examined to better understand the influence of polarity and accessibility on their sorption behavior. The polarity and structures of cuticular fractions were characterized by elemental analysis, Fourier transform infrared spectroscopy, and solid-state 13C NMR. The sorption isotherms fit well to the Freundlich equation. Sorption of the tested organic compounds to PC4, which had more condensed domains, was nonlinear (Freundlich N(s) values of 0.766-0.966). For naphthalene and phenanthrene, the largest sorption capacity (K(oc)) occurred in PC5, which contained the highest paraffinic carbons (63%) and the lowest polarity: approximately 2 and aproximately 3 times higher than the respective carbon-normalized octanol-water partition coefficient (K(owc)), indicating that PC5 was a powerful sorption medium. For phenol and 1-naphthol, the largest K(oc) values occurred in PC4 with polar aromatic cores: approximattely 17 and approximately 7 times higher than the respective K(owc), suggesting that PC4 was much more accessible and compatible to polar aromatic pollutants than nonpolar aromatic pollutants. There was little or no correlation of K(oc) with either aliphatic or aromatic components of the tested aliphatic-rich sorbents because the polarity and accessibility apparently played a regulating role in the sorption of organic contaminants.  相似文献   

4.
The nonhydrolyzable carbon (NHC) and black carbon (BC) in three contaminated soils and seven sediments from the Pearl River Delta and Estuary, China, were isolated upon treatments with an acid hydrolysis method and with a combustion method at 375 degrees C, respectively, and their sorption isotherms for phenanthrene (Phen) were established. It was found that NHC is chemically and structurally different from the biopolymer and humic substances and consists mainly of aliphatic and aromatic carbon using elemental analysis, 13C nuclear magnetic resonance spectroscopy (13C NMR), and Fourier transformed infrared spectroscopy (FTIR). All the sorption isotherms are nonlinear and are well fitted by the Freundlich model. The single-point organic carbon-normalized distribution coefficient (K(oc)) measured for the isolated NHC is 1.3-7.7 times higher than that for the bulk samples at the same aqueous concentration of Phen. The NHC fractions play a dominant role to the overall sorption in the bulk samples. The bulk soils and their NHC fractions have lower sorption capacity than the bulk sediments and their NHC fractions, relating to the different source of organic matter between soils and sediments. The Phen sorption capacity in the NHC samples is related significantlyto H/C ratios and aliphatic carbon, but negatively to aromatic carbon, demonstrating the important role of aliphatic carbon to the Phen sorption and the fate in the investigated soils and sediments.  相似文献   

5.
Nonlinear sorption by natural organic matter may have a significant impact on the behavior of organic contaminants in soils and sediments. This study presents a molecular probe approach based on linear solvation energy relationships (LSERs) to identify and quantify the molecular interactions causing concentration-dependent sorption and proposes estimation methods for sorption nonlinearities. Sorption isotherms ranging over concentrations of more than 4 orders of magnitude were determined in batch systems for 23 and 16 chemically diverse probe compounds in a lignite sample and a peat soil, respectively. Each sorbent showed characteristic nonlinear sorption with Freundlich exponents (1/n) being 0.7-1. The LSER-based analysis revealed that the strength of nonspecific interactions did not vary with concentration for both sorbents. In lignite, specific interactions did not affect sorption nonlinearity either, suggesting that compound-independent factors of lignite were responsible for the nonlinear sorption. In the peat soil, by contrast, the specific interactions related to the solute polarizability/dipolarity parameter (S) decreased with increasing concentration. Consequently, compounds of higher S values were more susceptible to nonlinear sorption in the peat soil. Phenol probes have shown that hydrogen bond donating properties of sorbate compounds have a substantial impact on the overall strength of sorption with organic matter, but no significant influence on sorption nonlinearity. Heterocyclic aromatic compounds appear to undergo additional interactions that are not accounted for by the LSER. These additional interactions considerably enhance both sorption capacity and nonlinearity.  相似文献   

6.
The first paper of this series reported that soil/sediment organic matter (SOM) can be fractionated into four fractions with a combined wet chemical procedure and that kerogen and black carbon (BC) are major SOM components in soil/sediment samples collected from the industrialized suburban areas of Guangzhou, China. The goal of this study was to determine the sorptive properties forthe four SOM fractions for organic contaminants. Sorption isotherms were measured with a batch technique using phenanthrene and naphthalene as the sorbates and four original and four Soxhlet-extracted soil/sediment samples, 15 isolated SOM fractions, and a char as the sorbents. The results showed that the sorption isotherms measured for all the sorbents were variously nonlinear. The isolated humic acid (HA) exhibited significantly nonlinear sorption, but its contribution to the overall isotherm nonlinearity and sorption capacity of the original soil was insignificant because of its low content in the tested soils and sediments. The particulate kerogen and black carbon (KB) fractions exhibited more nonlinear sorption with much higher organic carbon-normalized capacities for both sorbates. They dominate the observed overall sorption by the tested soils and sediments and are expected to be the most important soil components affecting bioavailability and ultimate fate of hydrophobic organic contaminants (HOCs). The fact that the isolated KB fractions exhibited much higher sorption capacities than when they were associated with soil/sediment matrixes suggested that a large fraction of the particulate kerogen and BC was not accessible to sorbing HOCs. Encapsulation within soil aggregates and surface coverage by inorganic and organic coatings may have caused large variations in the accessibility of fine kerogen and BC particles to HOCs and hence lowered the sorption capacity of the soil. This variability posts an ultimate challenge for precisely predicting HOC sorption by soils from the contents of different types of SOM.  相似文献   

7.
The sorption of iodide was reduced when soil was dried before equilibration with an iodide solution. With undried soils, sorption continued for > 48 h, maximum sorption occurred at pH values < 5 but a secondary sorption peak occurred at pH 8.5 to 9.0, particularly with a soil containing a high level of organic matter. Temperature had only a small effect on sorption over the range 10 to 35 °C. Maximum values for the sorption of iodide by two surface soils (0 to 10cm) at pH 6.6 to 6.8, assessed with a soil: solution ratio of 1:10, an equilibrium time of 40 h and at room temperature, were 25 and 6 fig I/g soil, respectively. The amounts of iodide sorbed by these soils, and by soils taken from successive 10 cm layers to a depth of 40 cm at the same two sites, were closely related to the contents of organic matter in the soils but not to contents of iron or aluminium oxides or of clay. Treatment of the surface soils with hydrogen peroxide to destroy organic matter greatly reduced the sorption of iodide at the pH of about 5.5 that resulted from the treatment. The removal of iron and aluminium oxides with Tamm reagent also resulted in a marked reduction in sorption at pH < 5. The results indicate that sorption was due in part to soil organic matter and in part to iron and/or aluminium oxides. At pH > 6, organic matter appeared to be the major sorbing constituent but under more acid conditions the oxides appeared to be increasingly important.  相似文献   

8.
Modeling kinetics of Cu and Zn release from soils   总被引:1,自引:0,他引:1  
Kinetics of Cu and Zn release from soil particles was studied using two surface soils with a stirred-flow method. Different solution pH, dissolved organic matter (DOM) concentrations, and flow rates were tested in this study. A model for kinetics controlled sorption/desorption reactions between soils and solutions was globally fit to all experimental data simultaneously. Results were compared to a model that assumes local instantaneous equilibrium. We obtained one unique set of model parameters applicable to different pH, dissolved organic carbon (DOC), and flow conditions. We included DOM complexation of copper ions, which decreased their sorption. The effect of pH was included by assuming proton competition with metal ions for binding sites on soil particles. These results provide the basis for developing predictive models for metal release from soil particles to surface waters and soil solution.  相似文献   

9.
Humic substances originated from aquatic, soil, or sediment environments are mixtures of humic compounds with various characteristics. Sorption interactions with isolated, well defined humic fractions can be studied either in an aqueous phase ("dissolved humic substances"), or in a solid-phase, by coating mineral particles with the humic materials, or simply by working with humic acid particles (powder) at low pH to minimize dissolution. Each attitude, by definition, can be studied by different experimental techniques and has a different meaning for understanding natural environmental processes. In this study, a new tool for studying sorption interactions is presented. Sol-gel was used as an inert matrix to immobilize (entrap) various humic acids (HAs), and then used to study the interactions of several polycyclic aromatic hydrocarbons (PAHs) with the entrapped HA. Linear and nonlinear sorption coefficients were highly correlated with contaminant hydrophobicity. Sorption of pyrene to immobilized HA was in the order of soil HA > Aldrich HA approximately = peat HA. It was concluded that the entrapped HAs retained their original properties in the gel matrix and were accessible to the external contaminant through the pore network. Additionally, binding coefficients of pyreneto dissolved humic substances and to dissolved organic matter (DOM) were determined from the reduction in pyrene sorption to immobilized HA in the presence of dissolved humic material or DOM in solution. Binding coefficients of pyrene were in the order of the following: dissolved Aldrich HA > dissolved peat fulvic acid (FA) > DOM derived from mature compost > DOM derived from fresh compost.  相似文献   

10.
Humin is a major fraction of soil organic matter and strongly affects the sorption behavior and fate of organic contaminants in soils and sediments. This study evaluated four different extraction methods for soil humins in terms of their organic carbon structural changes and the consequent effects on phenanthrene sorption. Solid-state 13C NMR demonstrated that 0.1 M NaOH exhaustively extracted humin and humin extracted with 6 M HF/HCl at 60 degrees C had a relatively high amount of aliphatic components as compared with 1 M HF-extracted humin. The treatment of 6 M HF/HCl at 60 degrees C greatly reduced carbohydrate components (50-108 ppm) from humin samples, i.e., more than 50% reduction. In addition, the humin from this 6 M HF/HCl treatment contained relatively more amorphous poly(methylene) domains than the humins extracted by other methods. With the respect to phenanthrene sorption, the linearity of sorption isotherm (N) and sorption affinity (Koc) varied markedly among the humin samples extracted by different methods. The NaOH exhaustively extracted humin had the most nonlinear sorption isotherm and the HF-extracted humin had the lowest Koc. It is concluded that humin samples from different extraction procedures exhibited substantial differences in their organic carbon structure and sorption characteristics, even though they were from the same soil. Therefore, one needs to be cautious when comparing the structural and sorption features of soil humins, especially when they are extracted differently. The 6 M HCl/HF extraction at elevated temperature is not encouraged, due to the modifications of chemical structure and physical conformation of organic matter.  相似文献   

11.
Remineralization of organic matter in reactive marine sediments releases nutrients and dissolved organic matter (DOM) into the ocean. Here we focused on the molecular-level characterization of DOM by high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in sediment pore waters and bottom waters from contrasting redox regimes in the northern Black Sea with particular emphasis on nitrogen-bearing compounds to derive an improved understanding of the molecular transformations involved in nitrogen release. The number of nitrogen-bearing molecules is generally higher in pore waters than in bottom waters. This suggests intensified degradation of nitrogen-bearing precursor molecules such as proteins in anoxic sediments: No significant difference was observed between sediments deposited under oxic vs anoxic conditions (average O/C ratios of 0.55) suggesting that the different organic matter quality induced by contrasting redox conditions does not impact protein diagenesis in the subseafloor. Compounds in the pore waters were on average larger, less oxygenated, and had a higher number of unsaturations. Applying a mathematical model, we could show that the assemblages of nitrogen-bearing molecular formulas are potential products of proteinaceous material that was transformed by the following reactions: (a) hydrolysis and deamination, both reducing the molecular size and nitrogen content of the products and intermediates; (b) oxidation and hydration of the intermediates; and (c) methylation and dehydration.  相似文献   

12.
The sorption/desorption equilibria and solvent extractabilities of phenol, o-cresol, and p-chlorophenol with respect to natural sorbents having different types of soil organic matter were investigated. Parallel tests in systems amended with birnessite (delta-MnO2), a solid-phase oxidative coupling catalyst, were also conducted. Sorption/desorption isotherms and solvent extraction data reveal that the relative isotherm linearities, desorption hysteresis, and extractabilities of these compounds are related to the geochemical nature of the sorbent organic matter and to the existence of system conditions that promote oxidative coupling reactions. When suitable coupling catalysts are present, soils containing primarily diagenetically "young" and highly amorphous organic matter (e.g., humic materials) are more likely to retain those solutes than are those containing primarily diagenetically "old" and more condensed organic matter (e.g., kerogens). The sorption/desorption properties of the solutes were significantly altered in the presence of birnessite as a result of both cross-coupling reactions with reactive soil organic matter components and self-coupling reactions with each other to form polymeric species. Under appropriate conditions, mineral-catalyzed oxidative coupling may exert a dominant influence on the sorption and transport of hydroxylated aromatic compounds in soil and sediment systems.  相似文献   

13.
Evidence is accumulating that sorption of organic chemicals to soils and sediments can be described by "dual-mode sorption": absorption in amorphous organic matter (AOM) and adsorption to carbonaceous materials such as black carbon (BC), coal, and kerogen, collectively termed "carbonaceous geosorbents" (CG). Median BC contents as a fraction of total organic carbon are 9% for sediments (number of sediments, n approximately 300) and 4% for soils (n = 90). Adsorption of organic compounds to CG is nonlinear and generally exceeds absorption in AOM by a factor of 10-100. Sorption to CG is particularly extensive for organic compounds that can attain a more planar molecular configuration. The CG adsorption domain probably consists of surface sites and nanopores. In this review it is shown that nonlinear sorption to CG can completely dominate total sorption at low aqueous concentrations (<10(-6) of maximum solid solubility). Therefore, the presence of CG can explain (i) sorption to soils and sediments being up to 2 orders of magnitude higher than expected on the basis of sorption to AOM only (i.e., "AOM equilibrium partitioning"), (ii) low and variable biota to sediment accumulation factors, and (iii) limited potential for microbial degradation. On the basis of these consequences of sorption to CG, it is advocated that the use of generic organic carbon-water distribution coefficients in the risk assessment of organic compounds is not warranted and that bioremediation endpoints could be evaluated on the basis of freely dissolved concentrations instead of total concentrations in sediment/soil.  相似文献   

14.
15.
Water chemistry and concentration of dissolved organic matter (DOM) have been reported to affect DOM conformation and binding properties with hydrophobic organic contaminants (HOCs). However, relationship between DOM conformation and its binding properties remains unclear. We designed a multibag equilibration system (MBES) to investigate the variation of carbon-normalized sorption coefficients (K(DOC)) of pyrene at different DOM concentrations based on an identical free solute concentration at different pHs and in the presence of Al ions. In addition, we studied the conformation of DOM under different conditions via atomic force microscopy (AFM) imaging, dynamic light scattering, and zeta potential measurements. Zeta potential measurements indicated that intra- and intermolecular interaction was facilitated at low pH or with the presence of Al ions, and a more organized molecular aggregate (such as a micelle-like structure) could form, thus, enhancing K(DOC). As DOM concentration increased, DOM molecular aggregation was promoted in a way reducing K(DOC). This research is a first attempt to correlate DOM conformation with K(DOC). Aggregation of DOM molecules resulting from increased zeta potential (less negative) generally led to an increased K(DOC). Further study in this area will provide valuable information on HOC-DOM interactions, thus, leading to more accurate predictions of K(DOC).  相似文献   

16.
17.
Phosphorus sequestration in wetland soils is a prerequisite for long-term maintenance of water quality in downstream aquatic systems, but can be compromised if phosphorus is released following changes in nutrient status or hydrological regimen. The association of phosphorus with relatively refractory natural organic matter (e.g., humic substances) might protect soil phosphorus from such changes. Here we used hydrofluoric acid (HF) pretreatment to remove phosphorus associated with metals or anionic sorption sites, allowing us to isolate a pool of phosphorus associated with the soil organic fraction. Solution (31)P and solid state (13)C NMR spectra for wetland soils were acquired before and after hydrofluoric acid pretreatment to assess quantitatively and qualitatively the changes in phosphorus and carbon functional groups. Organic phosphorus was largely unaffected by HF treatment in soils dominated by refractory alkyl and aromatic carbon groups, indicating association of organic phosphorus with stable, humified soil organic matter. Conversely, a considerable decrease in organic phosphorus following HF pretreatment was detected in soils where O-alkyl groups represented the major fraction of the soil carbon. These correlations suggest that HF treatment can be used as a method to distinguish phosphorus fractions that are bound to the inorganic soil components from those fractions that are stabilized by incorporation into soil organic matter.  相似文献   

18.
19.
This study presents a new experimental technique for measuring rates of desorption of organic compounds from dissolved organic matter (DOM) such as humic substances. The method is based on a fast solid-phase extraction of the freely dissolved fraction of a solute when the solution is flushed through a polymer-coated capillary. The extraction interferes with the solute-DOM sorption equilibrium and drives the desorption process. Solutes which remain sorbed to DOM pass through the extraction capillary and can be analyzed afterward. This technique allows a time resolution for the desorption kinetics from subseconds up to minutes. It is applicable to the study of interaction kinetics between a wide variety of hydrophobic solutes and polyelectrolytes. Due to its simplicity it is accessible for many environmental laboratories. The time-resolved in-tube solid-phase microextraction (TR-IT-SPME) was applied to two humic acids and a surfactant as sorbents together with pyrene, phenanthrene and 1,2-dimethylcyclohexane as solutes. The results give evidence for a two-phase desorption kinetics: a fast desorption step with a half-life of less than 1 s and a slow desorption step with a half-life of more than 1 min. For aliphatic solutes, the fast-desorbing fraction largely dominates, whereas for polycyclic aromatic hydrocarbons such as pyrene, the slowly desorbing, stronger-bound fraction is also important.  相似文献   

20.
The distribution of TNT* (the sum of TNT and its degradation products), aniline, and nitrobenzene between particulate organic matter (POM), dissolved soil organic matter (DOM), and free compound was studied in controlled kinetic (with and without irradiation) and equilibrium experiments with mixtures of POM and DOM reflecting natural situations in organic rich soils. The binding of TNT* to POM was fast, independent of irradiation, and adsorption isotherms had a great linear contribution (as determined by a mixed model), indicative of a hydrophobic partitioning mechanism. The binding of TNT* to DOM was slower, strongly enhanced under nonirradiated conditions, and adsorption isotherms were highly nonlinear, indicative of a specific interaction between TNT derivatives and functional groups of DOM. Nitrobenzene was associated to both POM and DOM via hydrophobic partitioning, whereas aniline binding was dominated by specific binding to POM and DOM functional groups. On the basis of nitrobenzene and TNT* adsorption parameters determined by a mixed Langmuir + linear model, POM had 2-3 times greater density of hydrophobic moieties as compared to DOM. This difference was reflected by a greater (O + N)/C atomic ratio for DOM. The sum of C-C and C-H moieties, as determined by X-ray photoelectron spectroscopy (XPS), and the sum of aryl-C and alkyl-C, as determined by solid-state cross-polarization magic-angle spinning (CP-MAS) 13C NMR, could only qualitatively account for differences in adsorption parameters. Aliphatic C was found to be more important for the hydrophobic partitioning than aromatic C. On the basis of nonlinear adsorption parameters,the density of functional groups reactive with aniline and TNT derivatives was 1.3-1.4 times greater in DOM than in POM, which was in fair agreement with 13C NMR and XPS data for the sum of carboxyl and carbonyl groups as potential sites for electrostatic and covalent bonding. We conclude that in contaminated soils characterized by continuous leaching of DOM, formation of TNT derivatives (via biotic and abiotic reductive degradation) and their preference for specific functional groups in DOM may contribute to a significant transportation of potentially toxic TNT compounds into surface waters and groundwaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号