首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
在电力系统中,随着电网规模的不断扩大,运行信息的数据规模与复杂程度不断增大,对其编码效率提出了更高的要求。字典学习算法是当前应用较为广泛的人工智能算法,其优势在于能够给出一个标准的基础信息库,使得依据该库所得到运行信息表示形式相对稀疏。首先介绍了字典学习算例原理与实施方法;结合电力系统调度运行控制实际,提出了基于字典学习的调度运行信息稀疏编码方法。最后基于某电网实际,利用近二年的运行记录信息构建了调度运行字典。算例表明利于该字典所编码表示的调度运行记录稀疏度处于0.35~0.80之间,符合大数据处理的稀疏性要求。  相似文献   

2.
在稀疏分解过程中,字典模型构建的结果会直接影响稀疏分解的效果。为获得结构更好的字典,提出了一种基于交替方向乘子法(ADMM)的字典学习方法,在字典学习过程中采用交替方向乘子法逐个更新字典中原子,得到的字典具有良好的结构。将该字典学习方法应用到滚动轴承振动信号稀疏分解中,能获得更快的字典学习速度和更好的稀疏分解效果。与K-SVD字典学习方法相比较,证明了所提方法在轴承信号稀疏分解中的优越性。  相似文献   

3.
提出了一种基于内容的双字典学习和稀疏分解结合起来的算法.针对待复原图像内容间的差异性,将训练图像块采用聚类的方法得到多个分类式的字典,从中选择最合适的内容分类来进行图像的恢复,这样做使算法更具区分性,提升了图像的自适应能力.在此基础上,将高频信息分为主要高频和次要高频,并训练双重字典,结合稀疏表示的方法对图像进行重构,这比传统的基于字典学习的算法捕获了更多的图像高频信息,进一步提升了图像重构的质量.方法采用了K-SVD算法以提高稀疏字典编码的计算效率.与其他方法相比,该算法获得了更为精细的图像细节,在PSNR测试数据和主观视觉上都获得了理想的提升.  相似文献   

4.
针对现有机械振动信号去噪算法需要一定先验知识的问题,提出了一种基于字典学习和稀疏编码的自适应去噪滤波方法。根据信号的本质特性,应用在线字典学习方法对原始数据进行学习和训练,寻求数据驱动的最优字典空间。引入正交匹配追踪算法,确定原始信号在最优字典空间上的稀疏表示。基于稀疏编码和优化字典,重构原始信号,实现信号去噪。仿真和试验结果表明,相对于现有去噪方法,基于字典学习和稀疏编码的方法自适应能力强,去噪效果好。  相似文献   

5.
为了在故障诊断中合理引入代价敏感机制来降低故障误诊断的代价,提出了一种结合证据理论的代价敏感加权故障诊断方法。该方法通过误诊断代价矩阵获取各故障模式误诊断的危害度,赋予不同的代价权重,并对证据理论的概率分配函数进行代价加权,将故障误诊断的代价作为权重合理融入诊断结果,从而实现了代价敏感机制在故障诊断中的有效应用。实验结果表明,结合证据理论的代价敏感加权处理能够使得故障诊断结果更倾向于高代价故障,所提方法可以有效降低故障误诊断的代价。  相似文献   

6.
针对故障诊断领域存在的不考虑误诊断代价以及提出泛化能力强的诊断规则难等问题,提出了一种代价敏感直推式学习故障诊断方法。基于Kolmogorov算法随机性理论和代价敏感学习最小期望误分类代价准则提出了代价敏感直推式分类机制,并在此基础上设计了用于故障诊断的CsTCM-kNN算法。通过旋转机械轴系故障代价敏感诊断实验,验证了该方法能够有效地降低误诊断代价,且保证较高的诊断准确率。  相似文献   

7.
为了在支持向量机(support vector machine,简称SVM)中合理引入代价敏感机制来降低故障误诊断的代价,提出一种多分类SVM的代价敏感加权故障诊断方法。该方法通过对多分类SVM的硬判决得票矩阵进行代价敏感加权,将故障误诊断的代价作为权重融入SVM的硬判决,并分析硬判决的得票数和得票权重,从而构造出各故障的概率分配,最终实现多分类故障的SVM代价敏感加权诊断及概率输出。实验结果表明,多分类SVM代价敏感加权处理的诊断结果更趋向于高代价故障,所提方法能够有效降低故障误诊断的代价。  相似文献   

8.
针对只给定单幅目标图像的情况下,而要在监控视频中查找出该目标人脸图像的问题,提出了一种单样本的低分辨率单目标人脸识别算法。考虑到待识别样本集中的目标与非目标对象数量严重不均衡,以及单目标问题无法利用不同类别间的互斥关系。首先在待识别样本集中,通过聚类算法,将单目标的识别问题转化为多目标识别问题,进而提高开集人脸识别算法的鲁棒性;其次,利用迭代标签传播算法不断优化待识别样本的归属类别;在迭代过程中,按照置信概率估计每个类别的人脸确认阈值,以解决单样本无法训练分类器的问题。在多个人脸数据集上的实验结果表明,该算法对于单目标的单样本的人脸识别精确率既能逼近100%,也具有较高的召回率。  相似文献   

9.
基于学习字典的图像修复算法   总被引:1,自引:0,他引:1  
多数图像修复方法主要是利用输入图像中的有效信息来填充待修复区域,可用先验信息有限,自适应性较差.研究提出一种新的基于学习字典的图像修复框架,核心思路是通过大量样本图像和输入图像的有效数据训练学习字典,建立样本图像特征块与原始数据块之间的稀疏关联,并将这种关联作为先验知识来指导图像的修复.该方法既充分利用了样例图像的先验知识,又考虑了待修复图像本身的信息,提高了算法的自适应性.通过对自然图像进行大、小范围图像修复和文字去除实验,文中方法均取得较好的修复效果.  相似文献   

10.
在设备故障诊断过程中,数据集中正负分类样本数量相差较为悬殊等数据不平衡问题会导致诊断准确率降低。为减少由于正负类样本不均衡而导致的误判,提高设备故障诊断准确率,提出一种代价敏感方法。该方法借助Boosting方法,通过多次概率采样生成多个模型,并确定每个模型的权重。其中采样的概率取决于代价调整值,所提方法在每一个迭代过程中根据上一次迭代的结果对代价调整值进行调整。通过实验,并与其他方法进行对比,结果表明与采用固定的代价敏感值及非代价敏感方法相比,提出的方法具有更好的表现。  相似文献   

11.
基于多尺度稀疏字典的多聚焦图像超分辨融合   总被引:2,自引:0,他引:2  
由于传统的多聚焦图像融合算法不能对图像中聚焦区域划分进行有效度量,提出了一种新的多聚焦图像超分辨融合方法来改善图像融合效果。该方法对图像清晰区和模糊区进行度量,并利用稀疏表示方法对度量后的清晰区域进行超分辨重建。首先,采用空间频率方法提取源图像中清晰区域与模糊区域,然后确定清晰区域中的主清晰区和次清晰区,并计算它们的真实下采样尺度。最后,通过学习多尺度稀疏表示字典对图像中次清晰区域进行超分辨率重建,并与清晰区域结合形成最终融合图像。实验及各种定量评价结果表明,提出的方法较常规方法具有更好的融合性能,得到的图像更清晰。对比Harr小波,非下采样轮廓波变换(NSCT),剪切波(Shearlet)变换等方法,其熵(EN)提升了1%,峰值信噪比(PSNR)提升了0.62dB,清晰度(SP)和空间频率(SF)提升30%,均方误差(MSE)下降了6%左右。  相似文献   

12.
针对复杂多变的肝脏图像,提出了一种基于先验稀疏字典和空洞填充的三维肝脏图像分割方法。对腹部CT图像进行Gabor特征提取,并分别在Gabor图像和灰度图像的肝脏金标准边界上选择大小相同的图像块作为两组训练集,利用训练集得到两种查询字典及稀疏编码。将金标准图像与待分割图像配准,并将配准后的肝脏边界作为待分割图像的肝脏初始边界;在初始边界点上的十邻域内选择大小相同的两组图像块作为测试样本,利用测试样本与查询字典计算稀疏编码及重构误差,并选择重构误差最小的图像块的中心作为待分割肝脏的边界点;最后,设计一种空洞填充方法对肝脏边界进行补全和平滑处理,得到最终分割结果。利用医学图像计算和计算机辅助介入国际会议中提供的肝脏数据进行了实验验证。结果表明,该方法对肝脏分割图像具有较好的适用性和鲁棒性,并获得了较高的分割精度。其中,平均体积重叠率误差为(5.21±0.45)%,平均相对体积误差为(0.72±0.12)%,平均对称表面距离误差为(0.93±0.14)mm。  相似文献   

13.
基于判别字典学习的电能质量扰动识别方法   总被引:3,自引:0,他引:3       下载免费PDF全文
电能质量扰动识别方法通常是先通过数字信号处理工具对信号进行检测和特征提取,再采用人工智能方法对特征进行分类识别,增加了识别过程的复杂性和冗余性。提出一种基于判别字典学习(DDL)的稀疏表示电能质量扰动识别方法,可有效减少识别步骤、降低复杂性,并提高识别率。该方法首先采用主成分分析方法将K类扰动训练样本集降维为扰动降维特征训练样本集,由各类样本分别训练出冗余子字典,然后级联成判别字典。接着基于l0范数算法求解出降维测试信号在该判别字典下的稀疏表示矩阵,最后利用不同的冗余子字典重构测试样本,由冗余残差最小值确定目标归属类,实现对电能质量扰动信号的识别。仿真实验结果表明该方法能有效地对不同电能质量扰动进行识别,过程简单、数据量少、抗噪声鲁棒性好,在信噪比20 d B以上的噪声环境中电能质量扰动识别准确率达到95%以上。  相似文献   

14.
针对目前已有的非线性降维算法存在计算复杂度高、难以处理大型数据集和增量化降维问题,本文提出了一种基于局部约束字典学习的非线性降维算法。该方法通过重构一些潜在标志点的局部内在流形,并在数据处理过程中将训练数据和未知数据一起嵌入到内在流形中,使得数据的内在几何结构特征得以保持。与已有非线性降维方法相比,该算法具有计算复杂度低、存储空间小和通用性强的特点,可以很好地解决增量化降维问题,易于处理大型数据集。另外,该算法也可以解决高维数据的重构问题,与已有重构方法相比具有计算简单、重构误差较低的特点。实验结果表明了算法的有效性。  相似文献   

15.
视频图像中脸像检测是近年来视觉图像检测和模式识别领域的研究热点。提出一种基于实时预测学习分类的脸像快速检测算法,即ARMA-Boost算法。首先根据脸像位置先验信息,利用ARMA模型(auto-regressive and moving average model)预测脸像位置区域,然后采用AdaBoost算法对预测区域进行脸像检测。该方法在时间维度对AdaBoost算法进行扩展,减小脸像搜索范围,提高检测效率。利用该方法对离线视频文件和CCD图像传感器实时脸像视频进行检测,实验结果表明,与支持向量机、传统AdaBoost和基于优化肤色模型的AdaBoost改进算法相比,ARMA-Boost算法脸像检测准确率高,实时性更好,可以对视频脸像进行快速检测应用。  相似文献   

16.
为解决民航发动机故障诊断面临的故障样本不足的问题,提出一种基于深度自动编码器(DAE)迁移学习的小样本故障诊断方法.该方法首先利用大量的正常样本对DAE进行训练,建立发动机状态特征提取模型;然后将该特征提取模型迁移到具有少量数据的发动机故障样本中,并对这些故障样本进行特征提取;最后利用支持向量机(SVM)实现小样本分类.为了使DAE能够学习到更具有代表性的深度特征,利用重构误差评估不同隐藏层神经元节点数下的单个自动编码器(AE)特征提取能力,进而通过单个AE特征提取能力对DAE隐藏层的神经元节点数进行优化.以某航空公司的C FM 56-7B系列发动机的实际飞行历史数据验证了所提故障诊断方法的有效性.  相似文献   

17.
A unique state-of-the art sample shifting technique (SST), proposed in recent literature, is utilized particularly for the estimation of reactive power from sample values of voltage and current signals only while the active power is evaluated from their as usual product. Also all other related parameters, as described in the IEEE 1459-2010 standard, are estimated in this measurement. A hardware prototype is developed to study its viability by estimating the measurement errors under pure and different polluted environment conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号