首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计了一种高精度阈值可调过温保护电路。该电路利用与温度无关的电压和一个具有负温度系数的电压相比较,实现温度的检测。通过基准分压得到高、低阈值电压可调的迟滞比较器,具有较高的精度。基于0.18μm BCD工艺模型,利用Hspice软件对电路进行仿真。仿真结果表明,在典型应用下,当温度高于150.5℃时,过温保护电路输出高电平,关断电路;当温度低于130.5℃时,电路重新开启,具有20℃迟滞量。在3~5.5 V电源电压范围内,过温电压阈值和迟滞温度最大偏移量小于0.02℃。  相似文献   

2.
范建功  冯全源 《微电子学》2016,46(4):493-496
在传统带隙基准源的基础上,设计了一种改进型带隙基准源电路,能很好地抑制三极管集电极电流变化对输出的影响,获得很低的温度系数和很高的电源电压抑制比。基于BCD 0.18 μm工艺库,仿真结果表明,当电源电压VIN为4.5 V,温度范围为-40 ℃~140 ℃时,基准源电路的输出电压范围为1.2567~1.2581 V,温度系数为6.3 ×10-6/℃;电源电压在2.5~5 V范围内变化时,基准源电路输出的最大变化仅为1.66×10-4 V,线性调整率为0.006 64 %;低频电源电压抑制比高达97 dB。过温保护电路(OTP)仿真表明,该基准源电路有良好的温度特性,温度不高于140 ℃都可正常工作。  相似文献   

3.
采用曲率补偿的高PSRR基准电压源   总被引:3,自引:1,他引:3  
设计了一种输出电压为1.5 V的带隙基准电路.该电路采用标准CMOS工艺,工作电压为3~6.5 V.采用一种简洁的曲率补偿技术,使输出基准电压温度系数达到3×10-6V/℃.由于采用共源共栅输出结构,在室温27℃、频率小于1 kHz时,电源抑制比达到97 dB,电源影响率小于15×10-6V/V.另外,还设计了启动电路和电流源偏置电路,可以整体应用到SOC系统.  相似文献   

4.
采用CSMC5V0.6μm标准CMOS工艺设计研制了一种过温保护电路。该电路由三部分构成:PTAT(与热力学温度成正比)电压产生电路,带隙基准源电路和比较器电路。芯片测试结果表明在30~130℃温度范围内PTAT输出电压线性度良好(最大偏差小于1.6%),灵敏度约为10mV/℃;关断温度可由外接电阻设定,85℃以下实测值与设定值偏差小于5℃,85℃以上偏差稍大约为10℃。该过温保护芯片电路结构简单、面积小、功耗低,且具有良好的移植性,可广泛应用于LED照明驱动电路,电源管理芯片等场合,也可用于和MOS功率器件混合封装组成带过温保护的功率器件模块。  相似文献   

5.
一种高温度性能的CMOS带隙基准源   总被引:1,自引:1,他引:0  
提出了一种正负温度系数电流产生电路,使用分段线性温度补偿技术用于传统的电流模式基准电路中,改善CMOS带隙基准电路在宽温度范围内的温度漂移.采用0.18μm CMOS混合信号工艺,对该电路进行了设计.在1.8V的电源电压条件下,基准输出电压为0.801 V,温度系数在-40℃-125℃范围内可达到2.7ppm/℃,电源电压从1.5V变化到3.3V的情况下,带隙基准的输入电压调整率为1.2mV/V.  相似文献   

6.
蔡敏  李炜 《半导体技术》2005,30(1):76-78
采用温度补偿技术设计了一种高性能的CMOS基准电流源电路,该电路采用N阱CMOS工艺实现.通过Cadence Spectres仿真和测试的结果表明,在-40~85℃的温度范围内,该电路输出基准电流的温度系数小于40ppm/℃,基准电流对电源电压的灵敏度小于0.1%.在3.3V电源电压下功耗仅为1.3mW,属于低温漂、低功耗的基准电流源.  相似文献   

7.
提出了一种改善电流比例失调的无电阻带隙基准电压源。该电路将传统源耦差分对结构的电压转换器改进为共源共栅结构电流镜,并引入了一对额外的电流镜来钳制漂移,显著改善由沟道长度调制效应所引起的电流镜失调,同时减小了电流比例系数的温度漂移。设计了自偏置电路、启动电路以及简单二阶补偿电路,采用0.5μm BCD工艺仿真,在5 V工作电压下,输出电压有效温度系数为19.8×10–6/(℃–45~+125℃),低频电源抑制比PSRR为–50dB,工作电压在4.0~6.5 V变化时,输出电压变化小于17 mV,电路总功耗约300μW。  相似文献   

8.
设计了一种片上集成的高精确度、低功耗、无片外电容的低压差线性稳压器(LDO)。采用一种新型高精确度、带隙基准电压源电路降低输出电压温漂系数;采用零功耗启动电路和支路较少的摆率增强模块降低功耗,该电路采用CSMC 0.5 μm CMOS工艺。经过Cadence Spectre仿真验证,输出电压为3.3 V,在3.5~5.5 V范围内变化时,线性调整率小于0.3 mV/V,负载调整率小于0.09 mV/mA,输出电压在-40~+150 ℃范围内温漂系数达10 ppm/℃,整个LDO消耗17.7 μA的电流。  相似文献   

9.
尹勇生  易昕  邓红辉 《微电子学》2017,47(6):774-778
根据带隙基准电压源工作原理,设计了一种带2阶温度补偿的负反馈箝位CMOS基准电压源。不同于带放大电路的带隙基准电压源,该基准电压源不会受到失调的影响,采用的负反馈箝位技术使电路输出更稳定。加入了高阶补偿电路,改善了带隙基准电压源的温漂特性。电路输出阻抗的增大有效提高了电源抑制比。基于0.18 μm CMOS 工艺,采用Cadence Spectre软件对该电路进行了仿真,电源电压为2 V,在-40 ℃~110 ℃温度范围内温度系数为4.199 ×10-6/℃,输出基准电压为1.308 V,低频下电源抑制比为78.66 dB,功耗为120 μW,总输出噪声为0.12 mV/Hz。  相似文献   

10.
基于宽带隙、高饱和电子漂移速率、高击穿场强等材料特性优势,GaN高电子迁移率晶体管(HEMT)在高频大功率器件领域发展前景广阔。在集成电路中,基准电压源是为其他电路模块提供稳定参考电压的关键功能模块。基于0.5μm BCD GaN HEMT工艺,提出了一种GaN基准电压源的设计方案。Cadence Spectre仿真结果显示,该GaN基准电压源在-40~150℃范围内可实现2.04 V的稳定电压输出,温度系数为3.7×10-6/℃。在室温27℃下,当电源电压由5 V增至20 V时,输出电压的线性灵敏度为0.13%/V。该GaN基准电压源具有高温度稳定性,后续可与不同的GaN基电路模块组合构成功能丰富的GaN基集成电路。  相似文献   

11.
张强  陈贵灿  田泽  王进军  李攀 《电子工程师》2007,33(9):21-24,59
设计了一款带有软启动电路的精密CMOS带隙基准源,并且利用PN结正向导通电压具有负温度系数和基准源提供的偏置电流具有正温度系数的原理实现了过温保护功能。采用UMC公司0.6μm 2P2M标准CMOS工艺进行设计和仿真,HSPICE模拟表明带隙基准的输出电压为1.293 V,且具有较高的精度和稳定性。在1.5V~4.0V的电源电压范围内基准随输入电压的最大偏移为0.27 mV;在-40℃~120℃的温度范围内,基准随温度的变化约为4.41 mV;基准的输出启动时间约为25μs;当工作温度超过160℃时过温保护电路将输出使能信号关断整个系统。  相似文献   

12.
采用TSMC 0.25μm CMOS工艺,提出了一种基于衬底驱动放大器的高精度带隙基准(BGR)电路。采用衬底驱动技术的放大器,有效地降低了电源电压;通过PTAT2电流产生电路对基准电路进行2阶温度补偿,有效地降低了输出基准电压的温度系数;采用改进型共源共栅输出级电路,很好地改善了电路的电源抑制比(PSRR)。HSPICE仿真结果显示:在2 V供电电压下,输出基准电压为1.261 V,温度系数为8.24×10-6/℃,低频电源抑制比-为91 dB。整体电路功耗为1.37 mW。  相似文献   

13.
王建卫  李佐  张凤玲  张辉 《微电子学》2015,45(4):461-464
设计了一种适用于汽车电子电压调节器的高性能振荡电路。在传统张弛振荡电路结构的基础上增加工艺补偿级和温度补偿级,利用自补偿技术对温度、电源电压和工艺进行检测并校准。基于CSMC 40 V BCD工艺,通过Spectre仿真,电源电压为5 V,温度范围为-40 ℃~150 ℃时,电路输出频率最大误差小于1.6%;温度为27 ℃,电源电压为4~6 V时,电路输出频率最大误差小于2.2%;综合考虑电源电压、温度以及工艺涨落时,频率的最大误差小于8.5%。  相似文献   

14.
一种新型过温保护电路   总被引:1,自引:0,他引:1  
采用CSMC 0.5 μm工艺,设计了一种新型过温保护电路.从检测温度和控制温度两方面考虑,通过优化电路结构,提出一种新型系统解决方案.在不引入热振荡的前提下,实现稳定电路温度和输出关断信号的双重功能.采用Cadence的Spectre仿真器进行仿真,结果表明,温度在-50~200℃时,PTAT电压以10.5 mV/℃变化,过温保护开启温度为105℃,具有滞迟功能.成功流片后对芯片进行测试,结果显示,在20~130 ℃内,PTAT电压灵敏度约为10 mV/℃,过温保护开启温度的实测值与仿真值的偏差小于3℃,滞迟范围为20℃.该保护电路是开关电源IP的重要组成部分,在设计过程中时刻考虑其工艺健壮性和可重用性的约束条件,确保其可移植性.  相似文献   

15.
双极型高精度大负载电流集成电压基准源设计   总被引:1,自引:0,他引:1  
设计并实现了一种基于双极型工艺的2.5V高精度大负载电流集成基准电压源电路,通过对传统带隙基准电路的改进,设计中增加了电源电压分配电路、电流反馈电路和大电流驱动电路,实现高精度大负载电流的目标.通过Cadence软件平台下的Spectre仿真器对电路的温度系数、负载调整率、噪声、交流电源纹波抑制比、负载电流、启动时间等电参数进行仿真验证,得到了初始精度±0.5%,在-40~85℃范围内温度系数小于6×10-6/℃,负载电流0~50 mA,电源电压4.5~36 V,输出为2.5 V的集成电压基准源电路.该电路采用6 μm/36 VK极型工艺生产制造,芯片面积为1.7 mm×2.1 mm,具有过热保护、过流保护和反接保护功能.  相似文献   

16.
设计了一种新的采用0.35μm全数字工艺实现的无电阻的带隙基准电压源.该电路结构引入了差分放大器,以此来产生正比于温度的电压量,同时放大器减小了电路中由电源电压及温度变化所产生的镜像电流的误差,进一步提高了电路电源抑制比,降低了无电阻基准电压源的温度系数.Spice仿真结果表明,该电路结构具有较高的电源抑制比和低的温度系数:在电源电压从2.4V变化到5.0V时,输出电压波动小于9mV;在-25℃~125℃温度变化范围内,电压输出的最大变化量为±5.5mV.  相似文献   

17.
基于标准N阱CMOS工艺设计了一种带隙基准电压产生及输出驱动转换电路。该电路采用0.6μmCSMC-HJN阱CMOS工艺验证,HSPICE模拟仿真结果表明电路输出基准电压为1.25V左右;在–55℃~125℃温度范围内的典型工艺参数条件下,电路温度系数仅为7×10-6/℃;电源电压范围为4V ̄6V,在产生标称1.25V基准电压的同时,可以为负载提供1mA ̄2mA的电流驱动能力。  相似文献   

18.
针对传统CMOS带隙电压基准源电路电源电压较高,基准电压输出范围有限等问题,通过增加启动电路,并采用共源共栅结构的PTAT电流产生电路,设计了一种高精度、低温漂、与电源无关的具有稳定电压输出特性的带隙电压源.基于0.5μm高压BiCMOS工艺对电路进行了仿真,结果表明,在-40℃~85℃范围内,该带隙基准电路的温度系数为7ppm/℃,室温下的带隙基准电压为1.215 V.  相似文献   

19.
设计一种适用于标准CMOS工艺的带隙基准电压源.该电路采用一种新型二阶曲率补偿电路改善输出电压的温度特性;采用高增益反馈回路提高电路的电源电压抑制能力.结果表明,电路温度系数为3.3 ppm/℃,在电源电压2.7~3.6 V范围内输出仅变化18 μV左右.  相似文献   

20.
唐杰  陈忠学  章国豪 《电声技术》2016,40(12):25-29
基于sime 0.18 μm工艺,电源电压3.5V,设计了一种具有低温度系数和高电源抑制比的带隙基准电压和电流.在cadence平台上仿真结果表明在-40 ~ 85℃度的温度范围内其温漂系数为4.57 ppm/℃,为提高其电源抑制比提出改为共源共栅结构,增加电压加法器和增加预稳压电路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号