首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
混合式惯导系统是一种集平台式、捷联式、旋转式惯导系统优点于一体的新型惯导系统。该型惯导可利用自身的旋转机构和高精度、高分辨率角度传感器实现不拆机条件下的误差参数自标定功能,极大简化了标校流程和系统维护工作量,有利于武器平台和作战系统效能的发挥。针对混合式惯导系统的结构特点和典型的旋转方式进行了误差分析,给出了误差参数自标定的设计原则和方法,并用混合式惯导原理样机进行了验证,结果表明,所设计的自标定方案能够在不拆机条件下利用自身旋转机构完成对陀螺漂移、加计零偏、刻度系数误差及安装偏角等参数进行精确估计,因此具有较高的理论意义和工程应用价值。  相似文献   

2.
捷联惯导系统误差模型与仿真分析   总被引:1,自引:0,他引:1  
为研究捷联惯导系统短时间导航精度,建立了导航误差数学模型,分析了惯性器件误差对系统导航精度的影响。应用捷联惯性导航原理,针对系统短时间导航的特点,简化载体在导航坐标系的导航方程;由惯性器件安装误差与陀螺仪等效零漂经过方向余弦矩阵变换建立载体姿态误差方程;结合导航方程、姿态误差方程与惯性器件误差推导出载体速度误差与位置误差数学模型。在此基础上,建立了误差状态空间方程与误差模型框图。在Matlab/Simulink环境下建立了误差数学模型计算模块,用捷联惯导算法与误差模型共同解算地面150秒导航试验数据,结果表明:导航系X轴的相对系统误差小于20%,Y轴、Z轴的相对系统误差小于5%,验证了误差数学模型的正确性。此外,分析了加速度计精度的变化对短时间工作的捷联惯导系统导航误差产生基本的影响。  相似文献   

3.
为研究捷联惯导系统短时间导航精度,建立了导航误差数学模型,分析了惯性器件误差对系统导航精度的影响.应用捷联惯性导航原理,针对系统短时间导航的特点,简化了载体在导航坐标系的导航方程;由惯性器件安装误差与陀螺仪等效零漂经过方向余弦矩阵变换建立载体姿态误差方程;结合导航方程、姿态误差方程与惯性器件误差推导出载体速度误差与位置误差数学模型.在此基础上,建立了误差状态空间方程与误差模型框图.在Matlab/Simulink环境下建立了误差数学模型计算模块,用捷联惯导算法与误差模型共同解算地面150 s导航试验数据.结果表明:导航系X轴的相对系统误差<20%,Y轴、Z轴的相对系统误差<4%,验证了误差数学模型的正确性.此外,分析了加速度计精度的变化对短时间工作的捷联惯导系统导航误差产生的基本影响.  相似文献   

4.
研究了惯性测量单元(IMU)机载安装方式对捷联惯导在线标定的影响.首先针对动力调谐捷联惯导系统的误差进行了建模和参数估计分析.以激励误差输出为目的,通过改变IMU在试验飞行器的安装位置,从理论算法角度分析了角度偏移和位置偏移两种安装方式对IMU输出的影响,提出基于安装方式激励的捷联惯导在线标定算法,并进行了标定后的补偿效果验证.仿真表明,该算法能有效标定出动态情况下的惯导误差参数,IMU安装方式对惯导的空中在线误差标定起到了很好的激励作用,在同等航迹要求下大大提高了标定精度.  相似文献   

5.
针对制约高精度惯性导航系统精度的垂线偏差误差项问题,研究了垂线偏差对惯性导航系统水平位置误差的影响及各级惯导系统误差补偿时垂线偏差的指标需求。首先,推导了垂线偏差引起的惯导系统误差项的直接差分法和四阶龙格库塔数值更新算法,对比分析了两种算法在不同地区的水平位置误差的更新效果;然后,采用3种分辨率的垂线偏差网格数据对惯导系统进行补偿;最后,分析了垂线偏差补偿频率对位置误差补偿的效果并开展了车载导航DOV补偿实验。仿真及实验结果表明,两种误差更新算法都可以有效计算水平位置误差;垂线偏差最大可引起近3 000 m的位置误差,水平姿态误差与方位姿态误差1 h漂移约18″和72″;经DOV补偿后,水平定位精度提升了约230 m。  相似文献   

6.
针对光电辅助惯导的高精度定位定向系统而言,系统间敏感轴安装偏角的标定是惯导系统初始对准的关键。建立了敏感轴安装偏角的标定原理,将安装偏角的标定转化为对横向位置误差的标定,详细分析影响横向位置误差的主要因素,将惯导系统误差的影响与安装偏角影响分离,采用递推最小二乘算法标定出安装偏角所引起的横向位置偏差。仿真结果表明:敏感轴安装偏角的标定精度优于10″,实验验证结果优于20″(1σ),并且算法简单、实验操作方便、耗时较少、对外在环境依赖性小,因此本系统满足高精度定位定向系统的对准要求。  相似文献   

7.
双轴旋转调制技术可以实现对陀螺漂移和加计零偏的调制,从而极大地提高惯导系统的精度,以满足船用惯导高精度的导航需求.由于单元体一直作连续正反旋转运动,传统的位置法和速率法无法对该系统进行标定.提出了一种基于三轴转台和单元体自旋转的误差标定方案,实现了对系统误差的快速精确标定.其中旋转轴和陀螺及加计敏感轴间的不正交角标定精度优于1",陀螺、加计敏感轴间的不正交角标定精度优于2".海上试验表明,误差标定结果满足了系统1 nmile/24 h的导航要求,具有较高的工程应用价值.  相似文献   

8.
单轴旋转惯导系统中陀螺漂移的精确校准   总被引:2,自引:0,他引:2  
基于惯导系统的误差传播特性和轴向陀螺对经纬度误差的影响规律,提出了精确校准轴向陀螺漂移的方法以解决在单轴旋转惯导系统中单轴旋转只能自动补偿与转轴垂直的陀螺漂移,不能补偿轴向陀螺漂移的问题.首先,介绍了单轴旋转惯导系统自动补偿的基本原理.然后,在静基座的条件下分析了轴向陀螺漂移、初始方位和姿态角误差、初始速度误差等对经纬度的影响规律.提出了一种利用经纬度误差作为观测量,采用最小二乘法对轴向陀螺漂移进行精确校准的新方法.最后,利用激光陀螺单轴旋转惯导系统进行了静态导航试验和跑车试验.实验结果显示,该方法对轴向陀螺漂移的辨识精度达到o.000 5(°)/h,系统的定位精度优于1 nm/72 h.该方法能够有效地辨识轴向陀螺漂移,使系统达到较高的导航精度,具有很强的工程实用价值.  相似文献   

9.
针对双轴驱动系统中由两轴伺服增益不匹配造成的运动不同步问题,从单轴稳态误差分析入手,构建单轴跟踪误差与两轴同步误差的关系。推导出参考位置为斜坡信号时同步误差的理论计算公式,确定两轴伺服增益系数及进给速度与同步误差间的定量关系;基于推导所得公式,提出将速度影响因子引入交叉耦合控制器中,并给出两种同步误差补偿策略(策略1和策略2)。通过仿真与实验验证了所推导同步误差理论计算公式的正确性;所提出的两种同步误差补偿策略均能有效减小因两轴伺服增益系数不匹配而产生的同步误差,且补偿后单轴系统的动态响应性能不会受到影响;与采用补偿策略1相比,采用补偿策略2后所获得的同步误差曲线更为平稳。  相似文献   

10.
单轴旋转惯导系统建模与仿真   总被引:1,自引:0,他引:1  
建立了单轴旋转式捷联惯导系统数学模型和仿真模型,采用的导航算法能有效避免转台测角误差对系统定位精度造成的影响;仿真结果表明旋转IMU能提高抑制惯导定位误差的累积,提高惯导定位精度、姿态精度和速度精度也同时得到提高。  相似文献   

11.
As the inertial navigation completely depends on the sensed acceleration and rotation rate by IMU, the sensor errors accumulate and eventually lead to diverged inertial solutions. Therefore the compensation of the inertial sensor errors is an effective approach to improve the SINS navigation performance. The rotation error modulation in rotary SINS, which has been extensively used for the filter-optical IMU in the past, is one of the techniques to compensate or mitigate the inertial sensor errors and eventually improve the system navigation performance. The rotary SINS is an inertial navigator in which the IMU is installed on the rotational platform and rotated following the pre-designed rotation configuration, and the rotation error modulation is the technique that compensates the navigation errors caused by inertial sensor bias in a complete rotation cycle by rotating IMU. Given the auto-compensation of inertial sensor bias in rotation error modulation, the objective of this paper to develop a MEMS-based rotary SINS, in which the significant sensor bias is automatically compensated by rotating the IMU, to offer the comparable navigation performance to tactical-grade IMU. Simulation results indicate that, compared with the conventional method, the proposed approach attenuates the navigation errors and improve the calibration accuracy based on the reciprocating rotation scheme can be used to automatically improve the observability.  相似文献   

12.
双轴陀螺测试转台回转误差测量方法研究   总被引:1,自引:0,他引:1  
回转误差是伺服转台的主要性能指标之一,对导航系统漂移误差的补偿起着重要作用。为提高惯导系统的导航精度,针对惯性器件的性能测试,对某型双轴陀螺测试转台回转误差的测量方法进行了研究设计。介绍了双轴陀螺测试转台的工作原理和系统误差,重点研究了其回转误差测量原理,并以该测试转台为对象,对其回转误差进行具体测量,从而实现对双轴陀螺测试转台的检验。  相似文献   

13.
为减小杂光影响,全天时星光定向仪一般采用小视场,同一时刻只能观测一颗恒星无法输出姿态信息.本文提出一种基于单星测量的星光惯性组合导航系统,首先根据惯导输出的姿态和位置信息,控制转台和星光定向仪摆镜保证星光定向仪对目标导航星的观测,之后根据惯导的误差模型建立系统状态方程,根据星光定向仪测量的导航星方向矢量建立测量方程,利...  相似文献   

14.
数字天顶仪中倾角仪参数的标定   总被引:1,自引:0,他引:1  
针对运用数字天顶仪进行天文定位时旋转轴与垂直轴之间存在的轴系偏差,提出了高精度天顶仪倾角补偿方法。从数字天顶仪倾角补偿原理出发,引入了倾角仪双轴尺度系数、双轴交角等参数对倾角仪的输出值进行修正,然后提出了一种双轴倾角仪参数的标定方法。分析了旋转角度对于参数标定的影响,运用实验数据对标定方法进行了论证。结果显示:旋转角度会直接影响CCD图像传感器安装角度的标定值。另外,倾角仪参数的引入提高了数字天顶仪的定位精度,当旋转角度的误差值在2°以内时,标定参数的误差对定位结果的影响非常小。  相似文献   

15.
为了快速、系统地辨识双五轴数控铣削机床旋转轴几何误差,提出了一种基于R-test的误差测量辨识方法。根据R-test误差模型研究误差测量值与各项误差参数的关系,辨识旋转轴各个几何误差项以得到旋转轴的安装误差和运动误差;利用最小二乘法原理平面圆拟合和直线拟合的方法分别辨识出2项位移误差和2项垂直度误差;基于多体系统理论及齐次坐标变换方法建立刀具坐标系与工件坐标系的齐次坐标变换模型,并辨识出3项移动误差和3项转动误差;最后,根据所得辨识值对X向和Y向位移误差进行补偿。实验结果表明,补偿后X向和Y向位移误差明显减小,误差补偿结果验证了测量、辨识的准确性和有效性。  相似文献   

16.
为大幅提升立式加工中心加工精度,满足当代数控机床对高精度的需求,针对立式加工中心3个运动轴,深入分析了其轴向运动空间几何误差,提出了可有效辨识运动轴轴向运动空间6项几何误差的辨识方法.建立了空间6项几何误差辨识模型,并针对关联轴联动垂直度误差进行了有效分析,建立了垂直度误差辨识解析模型.同时,针对3个独立运动轴轴向定位...  相似文献   

17.
转台误差对数字天顶仪轴系误差的影响   总被引:1,自引:0,他引:1  
针对数字天顶仪在定位过程中存在的的轴系偏差,研究了如何对光轴与旋转轴、旋转轴与垂直轴之间的角度偏差进行补偿的方法。为了高精度地解算出测站点位置垂直轴的天文坐标,采用对称位置的两幅星图直接解算旋转轴的坐标,从而避免了光轴与旋转轴之间的补偿。采用双轴倾角仪测量倾角,并对旋转轴进行倾角补偿得出垂直轴的位置坐标。考虑进行轴系补偿时,转台误差会对旋转轴坐标和倾角补偿造成影响,分别研究了转台误差对于旋转轴以及倾角补偿的影响,并得出了转台误差的范围。实验结果表明:当测站点纬度的绝对值小于或等于88.3°时,转台误差必须小于或等于35″;当测站点纬度的绝对值大于88.3°时,转台误差值要小于|1 166.8cosδ|″。在对称位置解算测站点位置坐标时,必须提高转台的精度,以减小转台误差对于定位精度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号