首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
《机械强度》2015,(5):806-811
针对基于单源信息的EMD故障诊断的局限性和根据传统全矢谱分析故障的缺点,提出了基于EMD的全矢谱故障特征提取新方法。该方法对采集于同一截面上的互相垂直的两个传感器上的振动信号,运用EMD将其分别分解为若干IMF分量之和。根据IMF频率及其能量特点,通过全矢谱技术融合特定的IMF分量,得到基于EMD的全矢谱,进而进行故障诊断。仿真结果显示,该方法获取的故障特征更全面、准确。某额定功率为3000k W的TRT发电机组轴瓦振动故障诊断结果进一步表明了该方法的可行性和有效性。  相似文献   

2.
基于改进EMD和谱峭度法滚动轴承故障特征提取   总被引:1,自引:0,他引:1  
针对滚动轴承故障信号的强背景噪声特点,提出一种基于改进经验模态分解(empirical mode decomposition,简称EMD)与谱峭度法的滚动轴承故障特征提取方法.首先,利用EMD方法对原故障信号进行分解,得到若干平稳固有模态分量(intrinsic mode function,简称IMF);然后,采用灰色关联度与互信息相结合方法剔除传统EMD分解结果中存在的虚假分量;最后,运用谱峭度法和包络解调方法对真实IMF分量进行分析,提取故障特征频率.通过对实际滚动轴承故障信号的应用表明,该方法可有效地提取滚动轴承故障特征,且能够取得比传统包络解调分析更好的效果.  相似文献   

3.
为提高声音信号增强效果,减小实际信号的计算量,利用可变模态分解(Variational mode decomposition,VMD)与相关系数以及能量的起始点检测准则相结合提出一种新的信号增强算法。该算法首先利用能量的起始点检测准则判断出实际信号的起始点提取有效信号;利用VMD分解该信号,计算分解后各本征模态函数(Intrinsic mode function,IMF)与原始信号的相关系数;利用预设的相关系数阈值来自适应确定有效IMF,利用有效的IMF重构信号。为了评估该算法的增强效果,利用该算法与经验模态分解(Empirical mode decomposition,EMD)算法进行对比分析。理论分析和试验结果表明:提出的算法在相同信噪比不同采样频率以及不同输入信噪比的条件下获得的输出信噪比都高于EMD算法,从而验证了该算法的稳定性和准确性。  相似文献   

4.
为了准确识别水工结构的损伤,提出一种变分模态分解(variational mode decomposition,简称VMD)和Hilbert-Huang变换(Hilbert-Huang transform,简称HHT)边际谱相结合的水工结构损伤诊断方法。首先,采用联合的小波阈值和经验模态分解(empirical mode decomposition,简称EMD)降噪方法对原始信号进行降噪,减小环境噪声对结构损伤特征信息的干扰;其次,运用方差贡献率数据融合算法对降噪后各测点信号进行动态融合,提取结构完整的振动特性信息;然后,采用VMD方法将动态融合信号分解为一系列固态模量(intrinsic mode function,简称IMF),对各IMF分量进行Hilbert变换,求出融合信号的边际谱;最后,在VMD边际谱的基础上提取一种新的损伤特征向量-损伤灵敏指数,将其与马氏距离相结合对水工结构的损伤类型进行分类,并将该方法应用于悬臂梁模型试验。结果表明:该方法能够有效提取水工结构的损伤特性,准确识别水工结构的损伤和运行状态,为水工结构的安全运行提供了基础。  相似文献   

5.
针对旋转机械早期微弱故障诊断问题,提出了基于多元经验模态分解的旋转机械早期故障诊断新方法。首先将多个加速度传感器合理布置在轴承座的关键位置,同步采集多通道振动信息;再利用多元经验模态分解同时对多通道振动信号进行自适应分解,得到一系列多元IMF分量;最后,依据峭度准则和相关系数从中选取包含故障主要信息的IMF分量进行信号重构,提取故障特征。多元经验模态分解方法克服了EMD等方法在进行多通道数据融合时缺乏理论依据的局限性。仿真信号和旋转机械故障信号的实验结果表明,该方法明显优于EEMD方法,对齿轮和滚动轴承故障的检测精度更高,可以在强背景噪声情况下更好地提取出故障冲击特征。  相似文献   

6.
周浩  贾民平 《机电工程》2014,31(9):1136-1139
针对直接运用快速傅里叶变换(FFT)无法有效提取具有非线性非平稳特性的滚动轴承振动信号故障特征频率的问题,提出了一种基于经验模式分解和峭度指标的Hilbert包络解调方法.首先对滚动轴承的振动信号进行了经验模式分解(EMD),得到了包含轴承故障特征信息的各阶本征模态函数(IMF),再计算各阶IMF的峭度值,选取了峭度值较大的几阶IMF分量重构信号,并对重构信号进行了Hilbert包络解调分析,从而获得了滚动轴承的准确故障特征信息.分别对仿真模拟信号和实际滚动轴承发生内圈故障的振动信号进行了分析,清晰地得到了故障特征频率.研究结果表明,利用融合EMD、峭度系数和Hilbert包络解调的诊断方法能够快速、准确地提取滚动轴承的故障特征频率,从而可以对滚动轴承进行有效地故障诊断.  相似文献   

7.
针对齿轮箱齿轮故障特征提取过程中,经验模态分解(EMD)存在模态混叠、固有模态函数(IMF)筛分困难以及Wigner-Ville分布(WVD)存在交叉干扰项的问题,提出一种集合经验模态分解(EEMD)和Choi-Williams分布(CWD)相结合的齿轮故障诊断方法。首先,将采集到的齿轮故障信号进行EEMD分解,分解为多个单分量固有模态函数(IMF)的组合;然后,通过相关系数和香农熵准则去除虚假分量并筛选IMF;最后,将筛选出的IMF分量进行CWD表达,结合时频域表现出的频率与等时冲击特性,识别出齿轮故障特征。通过齿轮故障仿真和实验分析,验证了该方法在齿轮箱齿轮故障诊断中的适用性和有效性。  相似文献   

8.
针对齿轮振动信号非线性、非平稳的特点,提出一种基于集合经验模态分解(EEMD)与奇异熵增量谱的齿轮故障特征提取方法。首先,利用EEMD方法将齿轮振动信号分解为若干个平稳的本征模态函数(IMF)分量。EEMD方法利用正态分布白噪声的二进尺度分解特性,能够有效抑制经验模态分解(EMD)中的模态混叠现象。但由于背景噪声和残余辅助白噪声的影响,EEMD分解得到的IMF分量难以准确提取齿轮故障特征。利用奇异值分解(SVD)对IMF分量进行消噪和重构,根据奇异熵增量谱确定重构阶次,准确地提取齿轮的故障特征频率。仿真信号分析和齿轮箱齿轮故障实验验证了该方法的准确性和有效性。  相似文献   

9.
转子运转故障诊断时,采样信号中含有振动冲击和噪声,会对故障特征提取造成一定的干扰。针对转子故障振动信号特征提取不明显的问题,提出了一种基于相关系数原理的经验模态分解(EMD)方法,在使用EMD方法对故障信号进行时频分析的基础上,结合相关系数原则和EMD方法本身的滤波特性,对本征模态函数(IMF)进行筛选以达到降噪凸显故障特征的目的。试验数据分析证明,该方法能够有效运用于转子故障特征提取。  相似文献   

10.
刘祖菁  贾民平  许飞云 《机电工程》2013,(11):1297-1300,1322
针对复杂的齿轮箱振动信号难以提取出故障特征频率的问题,提出了一种将希尔伯特包络解调技术与经验模式分解(EMD)相结合的分析方法。首先对齿轮箱的故障信号进行了EMD分解,得到了本征模态函数(IMF分量),再对IMF分量进行了包络解调,得到了其调制信号,结合调制信号的频率成分可初步判断出齿轮箱中出现故障的齿轮;然后根据IMF分量与初始信号之间相关系数的大小,选择相关系数较大的分量重构信号,相当于对初始信号进行滤波;最后对重构的信号以啮合频率及其倍频为中心频率进行了带通滤波,对得到的信号进行了包络解调分析,再次进行了故障诊断,以验证故障诊断的准确性。整个过程通过对齿轮箱实测故障信号的分析加以验证。研究结果表明,该方法能够准确地提取出齿轮箱的故障特征频率,从而可以对齿轮箱故障进行有效地诊断。  相似文献   

11.
Since the empirical mode decomposition (EMD) lacks strict orthogonality, the method of orthogonal empirical mode decomposition (OEMD) is innovationally proposed. The primary thought of this method is to obtain the intrinsic mode function (IMF) and the residual function by auto-adaptive band-pass filtering. OEMD is proved to preserve strict orthogonality and completeness theoretically, and the orthogonal basis function of OEMD is generated, then an algorithm to implement OEMD fast, IMF binary searching algorithm is built based on the point that the analytical band-pass filtering preserves perfect band-pass feature in the frequency domain. The application into harmonic detection shows that OEMD successfully conquers mode aliasing, avoids the occurrence of false mode, and is featured by fast computing speed. Furthermore, it can achieve harmonic detection accurately combined with the least square method.  相似文献   

12.
经验模分解在信号趋势项提取中的应用   总被引:19,自引:1,他引:19  
研究了经验模分解方法(EmpiricalModeDecomposition,简称EMD)在信号趋势项提取中的应用,提出了基于EMD方法在不同频率限制要求下信号趋势项的定义和提取方法。通过应用于数值模拟信号及实测记录,验证了此定义的可靠性。分析结果表明,EMD方法依据信号自身的特性来定义趋势项,无需预先假定其类型,是一种提取信号趋势项的良好方法。  相似文献   

13.
LV  Chenhuan  ZHAO  Jun  WU  Chao  GUO  Tiantai  CHEN  Hongjiang 《机械工程学报(英文版)》2017,30(3):732-745
In fault diagnosis of rotating machinery, Hilbert-Huang transform(HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF(Intrinsic Mode Function). To counter such problems in HHT, a new method is put forward to process signal by combining the generalized regression neural network(GRNN) with the boundary local characteristic-scale continuation(BLCC).Firstly, the improved EMD(Empirical Mode Decomposition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the generated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain,frequency domain and related parameters of HilbertHuang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method can effectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accurately.  相似文献   

14.
针对动平衡测量中实际存在的转速波动问题,提出一种基于经验模态分解(empirical mode decomposition,简称EMD)和瞬时频率估计的不平衡信号提取方法。与传统的平稳信号分析方法不同,该方法采用3次样条插值法从键相信号中获取转子的瞬时频率,由瞬时频率构造不平衡信号,进而采用最小二乘法(least square method,简称LSM)辨识出不平衡信号的幅值和相位。为提高幅值和相位估计的精度,采用EMD算法对振动信号进行滤波处理后,再从中抽取数据样本。仿真和实验结果表明,该方法能够有效克服转速波动和干扰信号对不平衡信号提取精度的不利影响,提高不平衡量测量精度和稳定性,非常适合于工程应用。  相似文献   

15.
提出一种基于经验模式分解(Empirical Mode Decomposition,EMD)的冲击信号提取方法,利用该方法首先将含有周期性冲击的信号进行EMD分解,在分解后的高频段IMF中,存在着类似冲击响应信号的成分,这些成分是由原始信号中的周期性冲击引起的,通过包络解调方法,可以得到冲击响应信号出现的频率,该频率对应原信号中冲击信号出现的频率.由于碰摩故障发生时,往往伴随着周期性冲击信号的产生,故该方法可以应用于旋转设备碰摩故障诊断中.仿真信号和试验数据的分析结果表明,这种方法正确有效,可以应用于工程实际.  相似文献   

16.
利用倒阶次谱和经验模态分解的轴承故障诊断   总被引:1,自引:0,他引:1  
针对齿轮箱升降速过程中振动信号非平稳的特点,将阶次跟踪分析与希尔波特-黄变换技术相结合,提出了基于倒阶次谱和经验模态分解的滚动轴承故障诊断方法.首先,对齿轮箱加速时测得的瞬态信号进行时域采样,对时域信号进行等角度重采样,转化为角域伪平稳信号,然后对角域信号进行经验模态分解.最后,对包含轴承故障信息的高频固有模态函数进行倒阶次谱分析,就可以提取轴承的故障特征.通过对轴承内圈和外圈故障信号的分析表明,该方法能准确识别轴承的故障类型和部位.  相似文献   

17.
Since the empirical mode decomposition (EMD) lacks strict orthogonality, a new method for multicomponent signal decomposition, orthogonal empirical mode decomposition (OEMD), is proposed by this paper. The essential principle of this method is to obtain the intrinsic mode functions (IMFs) and the residue by self-adaptive band-pass filtering. Firstly, the feasibility of OEMD is theoretically analyzed, then its strict orthogonality and completeness is proved, and the orthogonal basis used in OEMD is generated. Secondly, the method of analytical band-pass filtering which preserves perfect band-pass feature in the frequency domain is presented, then two fast algorithms to implement OEMD are proposed, i.e. IMF sequential searching (ISS) algorithm and IMF binary searching (IBS) algorithm. The speed of IBS is faster than that of ISS, whereas IBS algorithm may obtain much more false IMFs than ISS when signals are of complex spectral constitutions. Finally, OEMD is applied to both synthetic signals and mechanical vibration signals, the results show that compared with EMD, OEMD better solves mode aliasing, avoids the occurrence of false mode, is free of end extension, and can be effectively applied to mechanical fault diagnosis.  相似文献   

18.
Gear is a vital transmission element, finding numerous applications in small, medium and large machinery. Excessive loads, speeds and improper operating conditions may cause defects on their bearing surfaces, thereby triggering abnormal vibrations in whole machine structures. This paper describes the implementation of empirical mode decomposition (EMD) method for monitoring simulated faults using vibration and acoustic signals in a two stage helical gearbox. By using EMD method, a complicated signal can be decomposed into a number of intrinsic mode functions (IMF) based on the local characteristic time scale of the signal. Vibration and acoustic signals are decomposed to extract higher order statistical parameters. Results demonstrate the effectiveness of EMD based statistical parameters to diagnose severity of local faults on helical gear tooth. Kurtosis values from EMD and that obtained from vibration and acoustic signals are compared to demonstrate the superiority of EMD based technique.  相似文献   

19.
An energy operator demodulation approach based on EMD (Empirical Mode Decomposition) is proposed to extract the instantaneous frequencies and amplitudes of the multi-component amplitude-modulated and frequency-modulated (AM-FM) signals. Furthermore the proposed approach is applied to machinery fault diagnosis. Firstly, EMD method is used to decompose a multi-component AM-FM signal into a number of intrinsic mode functions (IFMs). Secondly, the energy operator demodulation method is applied to each IMF and the instantaneous amplitudes and frequencies of a multi-component AM-FM signal are extracted. Finally, the spectrum analysis is applied to each instantaneous amplitude in order to obtain envelope spectra from which the mechanical fault can be diagnosed. The analysis results show that the energy operator demodulation approach based on EMD can extract the characteristic of machinery fault vibration signals efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号