演化聚类算法(ECM) 是一种有效的在线聚类算法, 能够根据输入数据实时调整聚类. 但是, 该聚类算法依赖于预先设置的最大距离阈值, 而且对数据输入次序敏感. 针对这些问题, 提出一种基于自适应学习的演化算法(SALECM), 在无法获取数据先验知识的情况下, 无需人为预先定义参数, 可自适应地调整聚类. 实验结果表明, 与 ECM相比, SALECM可提高在线聚类的自适应性能, 也能在一定程度上缓解数据输入次序对算法的影响.
相似文献针对产品动态到达的航空发动机装配车间, 对知识化制造系统的自进化问题进行研究. 将自进化的思想应用于该装配车间, 提出了知识化制造环境下该装配车间自进化问题的求解算法. 根据双层规划理论, 建立了系统在每个决策时刻静态决策问题的一般数学模型, 并设计了一种基于可行域搜索的双层遗传算法(FR-BiGA) 对模型进行求解. 仿真结果验证了该模型与算法的有效性和可行性, 且实验数据表明, 自进化的系统具有相对较优的生产性能.
相似文献针对多视角聚类任务如何更好地实现视角间的合作之挑战, 提出一种新的视角融合策略. 该策略首先为每个视角设置一个划分, 然后通过自适应学习获取一个融合权重矩阵对每个视角的划分进行自适应融合, 最终利用视角集成方法得到全局划分结果. 将上述策略应用到经典的FCM(Fuzzy ??-means) 模糊聚类框架, 提出相应的多视角模糊聚类算法. 在模拟数据集和UCI 数据集上的实验结果均显示, 所提出的算法较几种相关聚类算法在应对多视角聚类任务时具有更好的适应性和更好的聚类性能.
相似文献为了提高动态多种群粒子群(DMS-PSO) 算法的全局搜索能力, 将布谷鸟搜索算法(CS) 引入DMS-PSO 算法中, 提出DMS-PSO-CS 算法. 采用中位数聚类算法将整个种群动态划分为若干小种群, 各个小种群作为底层种群通过PSO 算法进行寻优, 再将每个小种群中的最优粒子作为高层种群的粒子通过CS 算法进行深度优化. 将所提出算法应用于CEC 2014 测试函数, 并与CS 算法和其他改进的PSO 算法进行比较. 实验结果表明, 所提出算法能够显著提高全局搜索能力和算法效率.
相似文献提出一种基于空间自适应划分的多目标优化算法. 为了增强种群的收敛性和多样性, 多维搜索空间被划分成多个网格, 网格内的粒子通过共享“引导”粒子的经验信息调整自身的速度和位置, 并引入年龄观测器实时记录引导粒子对Pareto 解集所做的贡献, 及时更新引导粒子, 以增强算法的全局搜索能力. 对多目标测试函数以及环境经济调度问题进行了仿真实验, 实验结果表明, 所提出算法能对解空间进行更加全面、充分的探索, 快速找到一组分布具有较好的逼近性、宽广性和均匀性的最优解集合.
相似文献针对谱聚类存在构造相似度矩阵时对尺度参数敏感以及处理多重尺度数据集效果不理想的缺陷, 提出一种基于密度调整的改进自适应谱聚类算法. 该算法将样本点所处领域的密度引入谱聚类, 利用密度差来调整样本点之间的相似度, 使其更符合实际簇类中样本点间的内在关系, 在一定程度上解决了多尺度聚类问题; 同时, 通过样本点的近邻距离自适应得到尺度参数, 使算法对尺度参数相对不敏感. 仿真实验验证了所提出算法的有效性和优越性.
相似文献为平衡多目标粒子群的全局和局部搜索能力, 提出一种基于高斯混沌变异和精英学习的自适应多目标粒子群算法. 首先, 提出一种新的种群收敛状态检测方法, 自适应调整惯性权重和学习因子的值, 以达到探索和开发的最佳平衡. 然后, 当检测到种群收敛停滞时, 采用一种带有高斯函数和混沌特性的变异算子协助种群跳出局部最优, 以增强全局搜索能力. 最后, 外部档案中的精英解相互学习, 增强算法的局部搜索能力. 在多目标标准测试问题上的仿真结果表明了所提出算法的有效性.
相似文献针对缓冲区有限的多目标流水车间调度问题, 提出一种基于Pareto 最优的广义多目标萤火虫算法. 通过引入交换子和交换序将基本萤火虫算法离散化, 并将算法拓展为全局搜索过程和局部搜索过程. 进化初期采用全局搜索将种群推向较优区域, 进化中后期采用捕食搜索策略使算法主体在全局搜索和局部搜索间智能切换, 从而保证全局与局部的平衡. 动态变步长策略进一步增强了算法搜索能力. 通过算例测试验证了所提出算法的有效性.
相似文献针对高超声速飞行器模型非线性、多变量和参数不确定特性, 并考虑控制增益变化可能导致控制奇异值问 题, 提出一种基于动态面的模糊自适应非线性控制方法. 根据动态面和动态逆策略, 分别设计了高度和速度跟踪控制 器. 利用模糊自适应方法在线逼近不确定函数项, 并采用Nussbaum 增益技术抑制虚拟控制增益不确定影响, 以减少 在线学习量, 保证系统的半全局一致最终有界性. 仿真结果表明, 所提出的方法可实现飞行器对高度和速度的准确跟 踪控制.
相似文献基于滞环函数提出一种参数可调的多涡卷混沌系统构造方法. 针对复杂不确定性系统, 综合利用自适应神经网络和重复学习控制方法设计一种自适应重复学习同步控制器; 利用自适应重复学习控制方法对周期时变参数化不确定性进行处理; 对函数型不确定性利用神经网络逼近技术进行补偿; 设计鲁棒学习项对神经网络逼近误差和扰动上界进行估计; 通过构造类Lyapunov 复合能量函数证明了同步误差学习的收敛性. 仿真结果验证了所提出方法的有效性.
相似文献针对一类多输入多输出线性时不变系统, 提出一种初态误差加速修正的PD-型迭代学习算法. 针对系统的任意初始状态, 在时间轴上设计一个随迭代次数增加而缩短的修正区间. 在该区间上, 控制算法对初始状态偏差进行修正; 修正区间外, 算法与无初始误差的学习律等同. 在Lebesgue-?? 范数度量跟踪误差意义下, 利用卷积的推 广Young 不等式证明了所提出学习控制律的收敛性. 数值仿真验证了该控制律的有效性.
相似文献定义了语言??数及其模糊熵, 提出了基于模糊熵和证据推理的多准则决策方法, 以解决准则权系数信息不完全确定的语言??数多准则决策问题. 所提方法通过建立基于语言??数模糊熵的线性规划模型来得到准则的最优权系数, 利用证据推理算法确定方案的综合准则值, 进而得出最优方案. 最后通过实例验证了所提出方法的有效性和可行性.
相似文献传统聚类算法一般针对的是确定数据, 无法解决不确定数据的聚类问题; 现有基于密度的不确定数据聚类算法存在参数敏感且计算率低的问题. 对此, 在引进新的不确定数据相异度函数、最优?? 近邻、局部密度和互包含概念的基础上, 提出解决不确定数据聚类问题的不确定数据的最优?? 近邻和局部密度聚类(OLUC) 算法. 该算法不仅能降低参数敏感性, 提高计算效率, 而且具有动态自适应优化?? 近邻, 快速发现聚类中心和除噪优化的能力. 实验结果表明, 所提出的算法对无论是否存在噪声的不确定数据集都效果良好.
相似文献针对柔性作业车间生产环境中机器故障的动态调度问题, 以最小最大完工时间和最小偏差为目标, 结合车间调度人员的经验建立多阶段人机协同动态调度策略. 在不同阶段该策略的调度人员可参与优化过程, 提高方案的可行性和稳定性. 设计外部精英库中最优解的更新方法, 依据海明距离保留具有相同目标值的多种调度方案. 最后通过实例仿真验证了该模型和算法的有效性、可行性和稳定性, 更便于有效地指导生产实践.
相似文献为了提高群集蜘蛛优化(SSO) 算法的性能, 提出一种基于动态学习策略的群集蜘蛛优化(DSSO) 算法. 该算法通过群体协作过程中学习因子的动态选择, 平衡算法的搜索能力和勘探能力; 采用随机交叉策略和云模型改进协作过程个体更新方式, 在维持种群多样性的同时尽量提高收敛速度. 基于标准测试函数的仿真实验表明, DSSO 算法可有效避免早熟收敛, 在收敛速度和收敛精度上较标准SSO 算法和其余4 种较具代表性的优化算法均有显著提高.
相似文献提出一种基于数据驱动的感应电机多模型逆自适应解耦控制方法. 首先, 利用仿射聚类法(AP) 对电机系统的输入输出数据进行聚类, 再基于聚类结果和隶属度函数建立相应的神经网络多模型逆, 以实现解耦控制. 针对电机系统运行过程中电机参数变化问题, 采用粒子群优化算法(PSO) 在线调节子模型权值, 以改善逆模型失匹造成解耦控制性能下降的问题. 仿真实验表明, 所提出的方法能对电机的转速和磁链实现良好的解耦控制, 且对电机系统工况参数变化具有良好的自适应能力.
相似文献针对多目标资源受限项目调度的特性, 基于结合活动列表和资源列表的编码设计了合理的交叉操作, 提出一种多目标教学算法. 为了在个体间有效交互信息, 在教师阶段非支配个体作为教师与学生执行交叉, 而在学生阶段学生间执行交叉, 同时在每个阶段通过前向-反向改进增强局部搜索能力, 并用Pareto 档案集存储和更新非支配个体.基于标准测试集的数值仿真及与现有最好算法的比较, 验证了所提出算法的有效性.
相似文献提出一类非线性不确定动态系统基于强化学习的最优控制方法. 该方法利用欧拉强化学习算法估计对象的未知非线性函数, 给出了强化学习中回报函数和策略函数迭代的在线学习规则. 通过采用向前欧拉差分迭代公式对学习过程中的时序误差进行离散化, 实现了对值函数的估计和控制策略的改进. 基于值函数的梯度值和时序误差指标值, 给出了该算法的步骤和误差估计定理. 小车爬山问题的仿真结果表明了所提出方法的有效性.
相似文献