首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>微波功率器件是指工作频段在300M~300GHz这个微波波段内的电子器件,主要用以实现微波功率的发射和放大、控制和接收等功能,是现代相控阵雷达、移动通讯基站等的核心部件。目前微波功率器件的主流产品主要基于第1代半导体材料硅(Si)、锗(Ge)和第2代半导体材料砷化镓(GaAs)、磷化铟(InP)。20世纪90年代,基于第3代宽禁带半导体材料氮化镓(GaN)的高频、大功率微波器件  相似文献   

2.
新型紫外光源研制成功   总被引:3,自引:1,他引:2  
以GaN为代表的第三代半导体材料,是制造短波长高功率发光器件和高温大功率电子器件的具有代表性的半导体材料。到目前为止,国际上高功率蓝色发光二极管(LED)、绿色LED、白光LED、蓝紫色LED及激光器等已实现了批量生产,走向了商业市场。 GaN半导体材料与器件的研究已历时30多年。前20年进展缓慢,未能研制出实用化的器件。近十年来,在日本获得了突  相似文献   

3.
正电力电子、新能源、电动汽车、5G通讯、高速轨道列车、能源互联网和智能工业等领域的兴起,对功率器件的性能提出了越来越高的要求。但传统硅(Si)器件已达到材料的物理极限,无法满足当前应用场景的需求。作为第3代半导体材料的典型代表,氮化镓(GaN)在1928年由Johason等人首次成功制备,  相似文献   

4.
相比于第一代和第二代半导体材料,第三代半导体材料具有更高的击穿场强、电子饱和速率、热导率以及更宽的带隙,更适用于制备高频、大功率、抗辐射、耐腐蚀的电子器件、光电子器件和发光器件。氮化镓(GaN)作为第三代半导体材料的代表之一,是制作蓝绿激光、射频微波器件和电力电子器件的理想衬底材料,在激光显示、5G通信、相控阵雷达、航空航天等领域具有广阔的应用前景。氢化物气相外延(Hydride vapor phase epitaxy, HVPE)方法因生长设备简单、生长条件温和和生长速度快而成为制备GaN晶体的主流方法。由于普遍使用石英反应器,HVPE法生长获得的非故意掺杂GaN不可避免地存在施主型杂质Si和O,使其表现出n型半导体特性,但载流子浓度高和电导率低限制了其在高频大功率器件中的应用。掺杂是改善半导体材料电学性能最普遍的方法,通过掺杂不同掺杂剂可以获得不同类型的GaN单晶衬底,提高其电化学特性,从而满足市场应用的不同需求。本文介绍了GaN半导体晶体材料的基本结构和性质,综述了近年来采用HVPE法生长高质量GaN晶体的主要研究进展;对GaN的掺杂特性、掺杂剂类型、生长工艺以及掺杂原子对电学性...  相似文献   

5.
<正>一、第3代半导体材料概述第3代半导体材料是继第1代半导体材料和第2代半导体材料之后,近20年刚刚发展起来的新型宽禁带半导体材料。第3代半导体材料以氮化镓(GaN)、碳化硅(SiC)、氧化锌(ZnO)和氮化铝(AlN)等宽禁带化合物半导体为代表,其具有高击穿电场、高热导率、高电子饱和速率及高抗辐射能力等特点,因而更适合于制作高温、高频、抗辐射及大功率器件,在光电子领  相似文献   

6.
消息报道     
苏州纳米所利用氮化镓器件从事核应用研究取得系列成果氮化镓(GaN)是一种III/V直接带隙半导体,作为第三代半导体材料的代表,随着其生长工艺的不断发展完善,现已广泛应用于光电器件领域,如激光器(LD)、发光二极管(LED)、高电子迁移率晶体管(HEMT)等。GaN基材料的良好抗辐射性能和环境稳定性,使得其在核探测领域具有很好的应用前景,在新型核电池领域也具有巨大的应用潜力。因为GaN辐生伏特效应核电池  相似文献   

7.
GaN纳米线材料的特性和制备技术   总被引:3,自引:0,他引:3  
GaN是一种具有优越热稳定性和化学性质的宽禁带半导体材料,这种材料及相关器件可以工作在高温、高辐射等恶劣环境中,并可用于大功率微波器件.最近几年,由于GaN蓝光二极管的成功研制,使GaN成为了化合物半导体领域中最热门的研究课题.简要介绍了GaN纳米线材料的制备技术;综述了GaN纳米线材料的制备结果和特性.用CVD法研制的GaN纳米线的直径已经达到5~12nm,长度达到几百个微米.纳米线具有GaN的六方纤锌矿结构,其PL谱具有宽的发射峰,谱峰中心在420nm.GaN纳米线已经在肖特基二极管的研制中得到应用.  相似文献   

8.
《新材料产业》2013,(12):7-8
事件:继硅(si)引导的第一代半导体和砷化镓(GaAs)引导的第二代半导体后,以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的第三代半导体材料闪亮登场并已逐步发展壮大。与第一、二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度,高的击穿电场、高的热导率、高的电子饱和速率和更高的抗辐射能力,因而更适合制作高温、高频、抗辐射及大功率器件。此外,第三代半导体材料由于具有发光效率高、频率高等特点,因而在一些蓝、绿、紫光的发光二极管、半导体激光器等方面有着广泛的应用。从目前第三代半导体材料和器件的研究来看,较为成熟的是碳化硅SiC和GaN半导体材料,而Zn0、金刚石和A1N等宽禁带半导体材料的研究尚属起步阶段。  相似文献   

9.
正第三代半导体材料受市场关注,包括碳化硅(SiC)材料以及氮化镓(GaN)产品,台积电也于上周宣布与意法半导体合作切入氮化镓市场,半导体业者包括环球晶、合晶、太极、嘉晶(3016)以及母公司汉磊、茂硅、世界、精材等厂商开始也切入此领域。随着此类第三代半导体材料具有更高效节能、更高功率等优势,更适用在5G通讯、超高压产品如电动车领域,未  相似文献   

10.
氮化镓(GaN)是一种III/V直接带隙半导体,作为第三代半导体材料的代表,随着其生长工艺的不断发展完善,现已广泛应用于光电器件领域,如激光器(LD)、发光二极管(LED)、高电子迁移率晶体管(HEMT)等。GaN基材料的良好抗辐射性能和环境稳定性,使得其在核探测领域具有很好的应用前景,在新型核电池领域也具有巨大的应用潜  相似文献   

11.
<正>第3代半导体是指以氮化镓(GaN)、碳化硅(SiC)、金刚石、氧化锌(ZnO)为代表的宽禁带半导体材料,各类半导体材料的带隙能比较见表1。与传统的第1代、第2代半导体材料硅(Si)和砷化镓(GaAs)相比,第3代半导体具有禁带宽度大、击穿电场高、热导率大、电子饱和漂移速度高、介电常数小等独特的性能,使其在光电器件、电力电子、射频微波器件、激光器和探测器件等方面展现出巨大  相似文献   

12.
<正>氮化镓(GaN)是直接宽带隙半导体材料,属于第3代半导体。相较于硅、砷化镓等,GaN的禁带宽度更大、击穿电场强度更高,具有更高的电子饱和度和漂移速率、更强的抗辐照能力以及较强的化学稳定性。氮化镓材料与硅、砷化镓材料的电子性能对比如表1所示。目前GaN制备工艺成熟,已经能够利用GaN制造出结构复杂的器件。GaN基紫外探测器由于在可见光和红外光范围内都没有响应,其在可见光和红外光背景下的紫外光探测具  相似文献   

13.
美国国际整流器公司(International Rectifier,IR)开发了使用氮化镓(GaN)半导体的功率器件技术平台(英文发布资料)。利用该平台制作的功率器件将考虑向AC-DC转换器、DO—DC转换器、马达驱动电路、照明器具、大功率音响设备及车载设备等扩展。  相似文献   

14.
首先分析了当前我国电子信息产业的现状,特别是电子材料与元器件行业的状况,结合国际上电子信息技术的发展趋势,阐述了研究集成电子材料的重要意义.文章结合作者的工作主要介绍了介电/GaN集成电子薄膜生长控制与性能研究情况,采用TiO2(诱导层)/MgO(阻挡层)组合缓冲层的方法控制介电/GaN集成薄膜生长取向、界面扩散,保护GaN基半导体材料的性能,降低介电/GaN集成薄膜界面态密度,建立界面可控的相容性生长方法.通过集成结构的设计与加工,研制出介电增强型GaN HEMT器件、高耐压GaN功率器件原型以及一体化集成的微波电容、变容管、压控振荡器、混频器等新型元器件.  相似文献   

15.
GaN基材料生长及其在光电器件领域的应用   总被引:3,自引:0,他引:3  
GaN具有禁带宽度大、热导率高、电子饱和漂移速度大和介电常数小等特点,在高亮度发光二极管、短波长激光二极管、高性能紫外探测器的高温、高频、大功率半导体器件等领域有着广泛的应用前景。介绍了GaN基半导体材料的制备方法,异质结构以及在光电子和微电子器件领域的应用,并讨论了今后的发展趋势。  相似文献   

16.
<正>相比第1代与第2代半导体材料,第3代半导体材料是具有较大禁带宽度(禁带宽度2.2eV)的半导体材料。第3代半导体主要包括碳化硅(SiC)、氮化铝(AlN)、氮化镓(GaN)、金刚石、氧化锌(ZnO),其中,发展较为成熟的是SiC和GaN。第3代半导体材料在导热率、抗辐射能力、击穿电场、电子饱和速率等方面  相似文献   

17.
以氮化镓(GaN)为代表的第三代半导体高功率密度的发展受限于自身热积累效应引起器件结温升高问题,严重导致器件性能和可靠性的下降。因此,器件的热管理已成为大功率器件研发和应用领域的一个重要研究方向,而器件本身及其材料的热特性表征贯穿于功率器件散热技术开发的整个过程,是评估和指导热管理研发的重要途径。为此,综述了国内外正在开展的器件芯片级热特性表征技术研究进展,系统分析了器件结温、外延薄膜热导率、界面热阻等热性能表征技术的优势及局限性,并阐述了这些热性能表征技术对芯片级热管理开发提供的技术指导及其面临的技术挑战。  相似文献   

18.
GaN基材料及其在短波光电器件领域的应用   总被引:1,自引:0,他引:1  
GaN具有禁带宽度大,热导纺高,电子饱和漂移速度大,临界击穿电压高和介电常数小等特点,在高亮度发光二极管,短波长激光二极管,高性能紫外探测器和高温、高频、大功率半导体器件等领域有着广泛的应用前景,本文介绍了GaN基半导体材料的各种特性,材料生长以及在光电器件领域的应用,并对存在的问题和今后的发展趋势提出了自己的看法。  相似文献   

19.
微波功率器件及其材料的发展和应用前景   总被引:1,自引:0,他引:1  
文剑  曾健平  晏敏 《材料导报》2004,18(2):33-37
介绍了微波功率器件的发展和前景,对HBT,MESFET和HEMT微波功率器件材料的特点和选取,以及器件的特性和设计做了分类说明.着重介绍了SiGe合金、InPSiC、GaN等新型微波功率器件材料.并对目前各种器件的最新进展和我国微波功率器件的研制现状及与国外的差距做了概述与展望.  相似文献   

20.
正第3代半导体材料是以碳化硅(SiC)、氮化镓(GaN)、氮化铝(AlN)金刚石为代表的宽禁带半导体材料。相比第1、2代半导体,第3代半导体材料禁带宽度较宽(禁带宽度2.2eV),导热率更高、击穿电场更高、抗辐射能力更强、电子饱和速率更大,基于它们制作的电子器件适合应用于高温、高频、抗辐射及大功率场合。目前SiC和GaN材料的生长与应用技术已经比较成熟,AlN和金刚石材料的研究还处于刚起步的阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号