首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
The paper presents a new desiccant cooling cycle to be integrated in residential mechanical ventilation systems. The process shifts the air treatment completely to the return air side, so that the supply air can be cooled by a heat exchanger. Purely sensible cooling is an essential requirement for residential buildings with no maintenance guarantee for supply air humidifiers. As the cooling power is generated on the exhaust air side, the dehumidification process needs to be highly efficient to provide low supply air temperatures. Solid rotating desiccant wheels have been experimentally compared with liquid sorption systems using contact matrix absorbers and cross flow heat exchangers. The best dehumidification performance at no temperature increase was obtained in an evaporatively cooled heat exchanger with sprayed lithium chloride solution. Up to 7 g kg−1 dehumidification could be reached in an isothermal process, although the surface wetting of the first prototype was low. The process then provides inlet air conditions below 20 °C for the summer design conditions of 32 °C, 40% relative humidity. With air volume flow rates of 200 m3 h−1 the system can provide 886 W of cooling power.A theoretical model for both the contact absorber and the cross flow system has been developed and validated against experimental data for a wide range of operating conditions. A simulation study identified the optimisation potential of the system, if for example the surface wetting of the liquid desiccant can be improved.  相似文献   

2.
A numerical model of a novel outside evaporative cooling liquid desiccant dehumidifier (OECD) was developed and the effects of inlet parameters, including the inlet temperature and relative humidity of dehumidified air and evaporative cooling (EC) air, as well as the inlet mass flow rate of solution and so on, on the device performances were investigated in this paper. The results show that as the inlet temperature of solution increased from 31 to 42 °C, the moisture removal rates of OECD were increased by 14.0–18.0% and 31.1–101.5% compared to the non-evaporative cooling dehumidifier (NECD) and the adiabatic dehumidifier respectively, whereas the dehumidification rate was only decreased by about 1.6% with increase in the inlet temperature of LiCl solution from 24 to 44 °C. All these results can provide guidance for the structural design and performance analysis of the dehumidifier in the future.  相似文献   

3.
The paper is aimed to develop a high performance rotary solid desiccant cooling system using a novel compound desiccant wheel (DW). The unique feature of the desiccant wheel is that it can work well under a lower regeneration temperature and have a higher dehumidification capacity due to the contribution of the new compound desiccant materials. Experimental results indicate that the novel desiccant wheel under practical operation can remove more moisture from the process air by about 20–40% over the desiccant wheel employing regular silica gel. A mathematical model that is used to predict the system performance has been validated with the test results. By integrating the desiccant wheel with evaporative cooling, heat recovery and heating for regeneration sections, a solid desiccant cooling system can be formed. Simulation results show that because of the use of the new compound desiccant, the desiccant cooling system can work under much lower regeneration temperature and have a relative high COP, thus low grade thermal energy resources, such as solar energy, waste heat, etc., can be efficiently utilized to drive such a cooling cycle.  相似文献   

4.
干燥剂涂层换热器(DCHE)是一种新开发的翅片管表面带有干燥剂涂层的换热器,它可以同时处理潜热和显热.为了获得更高的性能,高孔隙度的金属有机框架(MOF)被引入到设计中.本文通过水浴法成功合成MIL-101(Cr)材料,并对材料进行X射线衍射(XRD)、N2吸附-脱附测试、水蒸气吸脱附曲线、电镜扫描等系列物理表征.制作...  相似文献   

5.
A silica gel coated heat exchanger based air conditioning system driven by the evacuated tube solar water heater has been experimentally investigated. The system has been operated for two different modes namely cooling with dehumidification mode and heating with humidification mode in summer and winter season respectively. The system performance is analyzed in terms of regeneration rate, dehumidification rate and thermal coefficient of performance (COPth). Experimental results demonstrated that, for cooling and dehumidification mode, the process air is cooled by an average temperature of 8.5 °C. A better dehumidification rate can be achieved by using pre-cooling before dehumidification process. Post-cooling after dehumidification process is found to be advantageous for cooling capacity and COPth. For heating with humidification mode, the process air is heated by an average temperature of 13.3 °C with an average increment in humidity ratio of 1.9 g/kg. It is found that the average COPth of the system is 0.45 and 0.87 for cooling and heating mode respectively.  相似文献   

6.
为了降低空分系统压缩机功耗,提高压缩机运行可靠性,本文提出一种用于压缩机进气除湿的多级矩阵结构的冷却除湿器,并搭建了多级冷却除湿实验台,测试了除湿器的除湿性能。实验结果表明,在进口空气含湿量和温度固定为11.7 g/(kg干空气)和24.4 ℃时,当空气质量流量由0.48 kg/s增至0.78 kg/s,空气出口含湿量由7.1 g/(kg干空气)增至7.7 g/(kg干空气);在进口空气质量流量和温度固定为0.53 kg/s和25.2 ℃时,当冷却水温度由6.9 ℃升至11.9 ℃,空气出口含湿量由7.1 g/(kg干空气)增至9.4 g/(kg干空气)。同时,建立了除湿器内部传热传质过程的稳态数值模型,将模拟结果与实验结果进行对比。结果表明,该模型对于除湿器出口空气含湿量和温度的平均误差分别为8.6%和2.1%,显示出较好的可靠性。进一步模拟研究了多级矩阵结构与单级叉流结构冷却除湿器的除湿性能,发现采用多级结构可以有效提高除湿效率,在进口空气流量和冷却水质量流量分别为0.53 kg/s和0.3 kg/s时,多级结构的除湿量可以提高4.3%,除湿效率可以提高2.5%;通过增加填料模块的长度,可以提高除湿效率。当长方体填料模块体积固定为0.054 m3,模块长度由0.14 m增至0.28 m时,传质系数可由4.3 g/(m2?s)增至6.5 g/(m2?s),除湿效率由66.4%升至79.2%。  相似文献   

7.
A fundamental limitation in the dehumidification performance of adiabatic desiccant wheels occurs due to heating of the air stream to be dried. This results from both the carry-over of heat stored in the wheel and the release of the adsorption heat. Previous authors have identified an isothermal dehumidification process as theoretically superior, though the practicalities of constructing such a wheel have meant that demonstrating the benefit is difficult. Recently experimental data from testing of an internally cooled wheel was published. Here we use this data to calibrate a mathematical heat and mass transfer model of the internally cooled heat exchange desiccant wheel. The model is then used to estimate the performance for selected modifications to the design and materials. The results show that more than a 40% improvement is possible relative to the previously tested cooled wheel. The results have application to the development of desiccant air-conditioners.  相似文献   

8.
In this paper, high performance packing, namely, structured packing that has good heat and mass transfer characteristics, is proposed for dehumidification of air using liquid desiccants and for regeneration of liquid desiccants. In order to design a structured packing tower for liquid desiccant — air contacting operations, heat and mass transfer coefficients for each phase are required. This paper is concerned with the interface transfer of heat and mass when air is brought into contact with the liquid desiccant solution. A theoretical study of evaluating heat and mass coefficients in an air-desiccant contact system employing three liquid desiccants, namely calcium chloride, lithium chloride, and a mixture of 50% calcium chloride and 50% lithium chloride (called cost effective liquid desiccant, CELD) is investigated. Moreover, air phase transfer coefficients are correlated with flow rates of air and liquid and the temperature of air, whereas liquid phase coefficients are correlated with rates of air and liquid flow, and the temperature and concentration of the liquid. The findings for the three liquid desiccants are compared and discussed.  相似文献   

9.
In this paper, the performance of air cycle refrigerator integrated desiccant system used to cool and dehumidify warehouse is analyzed theoretically. Simulation analysis is carried out to calculate the system coefficient of performance, cooling effects and the humidity change under different values of pressure ratio, storage zone temperature inside dock and outdoor air conditions. Also, the effect of the air cycle and the rotor parameters on the system performance is evaluated. From the simulation result it is found that, the desiccant system has the ability to supply air to the dock area at very low humidity. The system coefficient of performance increases due to the exhaust heat recovery on the desiccant system, and this enhancement can be more than 100%. The coefficient of performance of the proposed system is greater than that of a conventional system under the same operating conditions.  相似文献   

10.
在液体除湿空调中,除湿器是系统的核心部件。本文搭建可用于实验研究的液体除湿空调系统中除湿器的实验台,对塔径300 mm、填料高度800 mm,以Li Cl溶液为除湿剂的除湿器布置测点进行实测。基于Mercel理论,根据热质平衡并结合D.I.Stevens的有效模型,建立适用于该液体除湿空调系统中的除湿器传热传质模型。从实验和理论模型两个方面分析除湿器进口各项参数对除湿量的影响,结果表明:理论值和实验值有很好的一致性,且数据差异较小,说明计算模型适应性良好,能准确的用于该除湿器的性能模拟测试,将实验与理论计算结果进行对比可知:在一定的工况范围内,除湿器的除湿量受进口溶液温度、浓度、质流密度等参数影响较大,其中溶液进口温度越低,除湿效果越显著,溶液进口浓度越低,除湿效果越好;溶液进口质流密度需控制在一定范围进行调节,才能显著提高除湿器性能;空气入口风速、干球温度以及含湿量对除湿出口的空气状态参数影响较弱。  相似文献   

11.
Liquid desiccant and heat pump (LDHP) hybrid air-conditioning system provides a promising independent air dehumidification solution. Capacity matching among the four major heat and mass transfer components, i.e. dehumidifier, regenerator, evaporator and condenser, is essentially important for energy efficiency of the hybrid system. In this paper, the configuration of the hybrid system is firstly studied. Novel matching indices are proposed to evaluate the matching effect. The results show that a LDHP hybrid system with double-condenser, one solution-cooled and one air-cooled, is a feasible configuration for achieving capacity matching. To achieve dynamic capacity matching under real changing operating conditions, the effects of three critical operating variables, including solution flow rate, revolution of the compressor and air flow rate in the air-cooled condenser, on capacity matching and energy performance are studied. Simulation results show that dynamic capacity matching can only be achieved by regulating these three operating variables simultaneously.  相似文献   

12.
A number of new desiccant materials have been proposed which have the potential to improve the performance of desiccant wheels being regenerated at low temperature. Desiccant wheels containing two such desiccant materials (zeolite and superadsorbent polymer) were compared with a conventional silica gel desiccant wheel. The superadsorbent polymer desiccant wheel achieved greater dehumidification than the silica gel wheel when dehumidifying high relative humidity air with low temperature (50 °C) regeneration air. The temperature of dehumidified air exiting the polymer wheel was also lower. The zeolite desiccant wheel was generally less effective at dehumidifying air and had a higher pressure drop.  相似文献   

13.
Numerical simulation has been conducted for the desiccant wheel, which is the crucial component of a desiccant cooling system. As the key operating/design parameters, the rotation speed and the area ratio of regeneration to dehumidification have been examined for a range of regeneration temperature from 50 °C to 150 °C. Optimization of these parameters is conducted based on the wheel performance evaluated by means of Moisture Removal Capacity (MRC). Simulations are focused on the effect of desiccant isotherm on the optimal conditions of these operating/design parameters. Also the effects of the outdoor air temperature and humidity on the optimum design parameters are examined.  相似文献   

14.
为解决传统空气源热泵系统冬季的结霜问题,同时提升夏季机组的性能,本文提出一种"一塔三用"的无霜空气源热泵系统。通过搭建实验台研究了在除湿工况下的空气温度、含湿量、质量流量及溶液温度、质量流量、质量浓度,在再生工况下的溶液质量浓度、温度对溶液塔进出口空气?、除湿?(再生?)、系统输入输出?及?效的影响。结果表明:除湿工况下,除湿?随空气温度、空气质量流量、溶液质量流量的增加以及空气含湿量、溶液温度、溶液质量浓度的减少而增加;系统的?效随空气温度、含湿量、质量流量及溶液质量流量、质量浓度的增加以及溶液温度的减少而增加,其中空气含湿量、溶液质量浓度对?效影响较小,此模式?效最高可达0. 201。再生工况下,再生?随溶液质量浓度、温度的增加而增加;系统?效随溶液质量浓度的增加、溶液温度的减少而增加,其中溶液温度对?效影响较小,此模式?效最高可达0. 108 8。该系统?效率在实验工况下高于常规空气源热泵系统。  相似文献   

15.
Airside heat and mass transfer and fluid flow characteristics of a wavy-finned-tube direct expansion air coil under cooling and dehumidifying condition have been experimentally investigated. Experiments were carried out to study the effects of operating conditions such as: air temperature, air relative humidity, air face velocity, and evaporator pressure on the airside performance (cooling capacity, dehumidification capacity, pressure drop, and heat transfer coefficient) of the coil. Charts for coil wet conditions, partially wet or totally wet, were conducted to identify the coil wet conditions in terms of the operating conditions. Two techniques, enthalpy potential method and equivalent dry-bulb temperature method, were used to analyze the data and to deduce correlations for Colburn factors for the different coil wet conditions. Comparison between the correlations predictions of the two techniques was presented.  相似文献   

16.
Performance analysis of liquid desiccant dehumidification systems   总被引:5,自引:0,他引:5  
Desiccant systems find applications in a very large variety of industrial and daily usage products including the new HVAC installations. An overview of liquid desiccant technology has been presented in this paper along with a compilation of experimental performance data of liquid desiccant dehumidifiers, empirical dehumidification effectiveness and mass transfer correlations in a useful and easy to read tabular format. The latest trends in this area suggest that hybrid systems are of current interest to HVAC industry, not only for high latent load applications but also for improving indoor air quality. The paper presents a comprehensive comparative parametric analysis of packed bed dehumidifiers for three commonly used desiccant materials viz. triethylene glycol, lithium chloride and calcium chloride, using empirical correlations for dehumidification effectiveness from the literature. The analysis reveals significant variations and anomalies in trends between the predictions by various correlations for the same operating conditions, and highlights the need for benchmarking the performance of desiccant dehumidifiers.  相似文献   

17.
Evaporative cooling is used in industrial and air conditioning processes to reduce temperature in different fluids. Direct evaporation systems can lead to environmental problems such as Legionnaire's disease, and indirect systems reduce system efficiency.This work presents the manufacture, test bed set up and trials carried out on a ceramic evaporative cooling system which acts as a semi-indirect cooler. Depending on air characteristics, it may act as a sensible or enthalpic exchanger. The water cooled in a cooling tower, using the return air coming from the conditioned room (22 °C and 50% comfort conditions) goes through the ceramic pipes, exchanging sensible and latent heat with a current of outdoor air.The use of this recovery system is mainly in climates with a high temperature and humidity such as tropical environments where the system yields a decrease in supply air humidity, using the cooling power of return air.The tests presented show the system behaviour for various supply air conditions.  相似文献   

18.
Solar liquid collector/regenerator (C/R), combining the functions of solar collector and regenerator of absorbent solution together, can be effectively utilized in solar energy-driven liquid desiccant cooling systems. Based on thermal balance of the glazing of solar C/R, a group of modified heat and mass transfer models, validated by experimental results to reflect solution regeneration process more truly, were put forward in this paper. Numerical simulation showed only preheating air stream, keeping an equal humidity ratio, did raise the performance of solar C/R, but preheating solution increased the regeneration efficiencies to reach twice that of preheating air stream. There occurred optimum mass flow rates for both air stream and solution film reaching 36–48 kg m−1 h−1 and 4∼6 kg m−1 h−1 respectively for solar C/Rs of 3∼6 m long. As for effect of the length of solar C/Rs, the regeneration efficiency ηr reached a maximum value at about 4 m and shorter or longer solar C/Rs failed to increase solution regeneration efficiencies.  相似文献   

19.
This study presents theoretical investigation on the performance of air cycle refrigerator driving air conditioning system integrated desiccant system. Total system performance is evaluated and the system feasibility is examined. The system has such characteristics that (1) safe material of air and water are used as a refrigerant, (2) waste heat from air cycle refrigerator performs the regeneration of desiccant material for energy saving. It has been clarifying that (1) controlling the evaporative cooling process in air washer, the system can operate for a wide range of cooling loads, (2) the total coefficient of performance on air conditioning system is better than the conventional vapor compression system with reheating coil, and (3) the system performance highly depends on the ratio of the amount of outdoor intake air to the supply air.  相似文献   

20.
Energy for air dehumidification and cooling can be stored efficiently and non-dissipatively in liquid desiccants. For optimal storage capacity, new dehumidifiers have been developed and tested, dehumidifying air by a cooled microflow of a hygroscopic aqueous salt solution, e.g. LiClH2O in an almost isothermal absorption process. A small, theoretically sufficient solution flow of about 0.21 l/(hm2) could be distributed uniformly over a cooled exchanger surface. An air dehumidification of 5.5 g/kg and a storage solution has been measured under steady state ARI conditions with an experimental dehumidifier for an air flow of 1000 m3/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号