首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important result in the study of polynomial-time preprocessing shows that there is an algorithm which given an instance (G,k) of Vertex Cover outputs an equivalent instance (G′,k′) in polynomial time with the guarantee that G′ has at most 2k′ vertices (and thus $\mathcal{O}((k')^{2})$ edges) with k′≤k. Using the terminology of parameterized complexity we say that k-Vertex Cover has a kernel with 2k vertices. There is complexity-theoretic evidence that both 2k vertices and Θ(k 2) edges are optimal for the kernel size. In this paper we consider the Vertex Cover problem with a different parameter, the size $\mathop{\mathrm{\mbox{\textsc{fvs}}}}(G)$ of a minimum feedback vertex set for G. This refined parameter is structurally smaller than the parameter k associated to the vertex covering number $\mathop{\mathrm{\mbox {\textsc{vc}}}}(G)$ since $\mathop{\mathrm{\mbox{\textsc{fvs}}}}(G)\leq\mathop{\mathrm{\mbox{\textsc{vc}}}}(G)$ and the difference can be arbitrarily large. We give a kernel for Vertex Cover with a number of vertices that is cubic in $\mathop{\mathrm{\mbox{\textsc{fvs}}}}(G)$ : an instance (G,X,k) of Vertex Cover, where X is a feedback vertex set for G, can be transformed in polynomial time into an equivalent instance (G′,X′,k′) such that |V(G′)|≤2k and $|V(G')| \in\mathcal{O}(|X'|^{3})$ . A similar result holds when the feedback vertex set X is not given along with the input. In sharp contrast we show that the Weighted Vertex Cover problem does not have a polynomial kernel when parameterized by the cardinality of a given vertex cover of the graph unless NP ? coNP/poly and the polynomial hierarchy collapses to the third level.  相似文献   

2.
The Planar Feedback Vertex Set problem asks whether an n-vertex planar graph contains at most k vertices meeting all its cycles. The Face Cover problem asks whether all vertices of a plane graph G lie on the boundary of at most k faces of G. Standard techniques from parameterized algorithm design indicate that both problems can be solved by sub-exponential parameterized algorithms (where k is the parameter). In this paper we improve the algorithmic analysis of both problems by proving a series of combinatorial results relating the branchwidth of planar graphs with their face cover. Combining this fact with duality properties of branchwidth, allows us to derive analogous results on feedback vertex set. As a consequence, it follows that Planar Feedback Vertex Set and Face Cover can be solved in \(O(2^{15.11\cdot\sqrt{k}}+n^{2})\) and \(O(2^{10.1\cdot\sqrt {k}}+n^{2})\) steps, respectively.  相似文献   

3.
In this paper, we consider multi-objective evolutionary algorithms for the Vertex Cover problem in the context of parameterized complexity. We consider two different measures for the problem. The first measure is a very natural multi-objective one for the use of evolutionary algorithms and takes into account the number of chosen vertices and the number of edges that remain uncovered. The second fitness function is based on a linear programming formulation and proves to give better results. We point out that both approaches lead to a kernelization for the Vertex Cover problem. Based on this, we show that evolutionary algorithms solve the vertex cover problem efficiently if the size of a minimum vertex cover is not too large, i.e., the expected runtime is bounded by O(f(OPT)?n c ), where c is a constant and f a function that only depends on OPT. This shows that evolutionary algorithms are randomized fixed-parameter tractable algorithms for the vertex cover problem.  相似文献   

4.
A circle graph is the intersection graph of a set of chords in a circle. Keil [Discrete Appl. Math., 42(1):51–63, 1993] proved that Dominating Set, Connected Dominating Set, and Total Dominating Set are NP-complete in circle graphs. To the best of our knowledge, nothing was known about the parameterized complexity of these problems in circle graphs. In this paper we prove the following results, which contribute in this direction:
  • Dominating Set, Independent Dominating Set, Connected Dominating Set, Total Dominating Set, and Acyclic Dominating Set are W[1]-hard in circle graphs, parameterized by the size of the solution.
  • Whereas both Connected Dominating Set and Acyclic Dominating Set are W[1]-hard in circle graphs, it turns out that Connected Acyclic Dominating Set is polynomial-time solvable in circle graphs.
  • If T is a given tree, deciding whether a circle graph G has a dominating set inducing a graph isomorphic to T is NP-complete when T is in the input, and FPT when parameterized by t=|V(T)|. We prove that the FPT algorithm runs in subexponential time, namely $2^{\mathcal{O}(t \cdot\frac{\log\log t}{\log t})} \cdot n^{\mathcal{O}(1)}$ , where n=|V(G)|.
  相似文献   

5.
The NP-complete problem Proper Interval Vertex Deletion is to decide whether an input graph on n vertices and m edges can be turned into a proper interval graph by deleting at most k vertices. Van Bevern et al. (In: Proceedings WG 2010. Lecture notes in computer science, vol. 6410, pp. 232–243, 2010) showed that this problem can be solved in $\mathcal {O}((14k +14)^{k+1} kn^{6})$ time. We improve this result by presenting an $\mathcal {O}(6^{k} kn^{6})$ time algorithm for Proper Interval Vertex Deletion. Our fixed-parameter algorithm is based on a new structural result stating that every connected component of a {claw,net,tent,C 4,C 5,C 6}-free graph is a proper circular arc graph, combined with a simple greedy algorithm that solves Proper Interval Vertex Deletion on {claw,net,tent,C 4,C 5,C 6}-free graphs in $\mathcal {O}(n+m)$ time. Our approach also yields a polynomial-time 6-approximation algorithm for the optimization variant of Proper Interval Vertex Deletion.  相似文献   

6.
Vertex deletion and edge deletion problems play a central role in parameterized complexity. Examples include classical problems like Feedback Vertex Set, Odd Cycle Transversal, and Chordal Deletion. The study of analogous edge contraction problems has so far been left largely unexplored from a parameterized perspective. We consider two basic problems of this type: Tree Contraction and Path Contraction. These two problems take as input an undirected graph G on n vertices and an integer k, and the task is to determine whether we can obtain a tree or a path, respectively, by a sequence of at most k edge contractions in G. For Tree Contraction, we present a randomized 4 k ? n O(1) time polynomial-space algorithm, as well as a deterministic 4.98 k ? n O(1) time algorithm, based on a variant of the color coding technique of Alon, Yuster and Zwick. We also present a deterministic 2 k+o(k)+n O(1) time algorithm for Path Contraction. Furthermore, we show that Path Contraction has a kernel with at most 5k+3 vertices, while Tree Contraction does not have a polynomial kernel unless NP ? coNP/poly. We find the latter result surprising because of the connection between Tree Contraction and Feedback Vertex Set, which is known to have a kernel with 4k 2 vertices.  相似文献   

7.
Given a graph with n vertices, k terminals and positive integer weights not larger than c, we compute a minimum Steiner Tree in $\mathcal{O}^{\star}(2^{k}c)$ time and $\mathcal{O}^{\star}(c)$ space, where the $\mathcal{O}^{\star}$ notation omits terms bounded by a polynomial in the input-size. We obtain the result by defining a generalization of walks, called branching walks, and combining it with the Inclusion-Exclusion technique. Using this combination we also give $\mathcal{O}^{\star}(2^{n})$ -time polynomial space algorithms for Degree Constrained Spanning Tree, Maximum Internal Spanning Tree and #Spanning Forest with a given number of components. Furthermore, using related techniques, we also present new polynomial space algorithms for computing the Cover Polynomial of a graph, Convex Tree Coloring and counting the number of perfect matchings of a graph.  相似文献   

8.
Stefan Kratsch 《Algorithmica》2012,63(1-2):532-550
It has been observed in many places that constant-factor approximable problems often admit polynomial or even linear problem kernels for their decision versions, e.g., Vertex Cover, Feedback Vertex Set, and Triangle Packing. While there exist examples like Bin Packing, which does not admit any kernel unless P = NP, there apparently is a strong relation between these two polynomial-time techniques. We add to this picture by showing that the natural decision versions of all problems in two prominent classes of constant-factor approximable problems, namely MIN F+Π1 and MAX NP, admit polynomial problem kernels. Problems in MAX SNP, a subclass of MAX NP, are shown to admit kernels with a linear base set, e.g., the set of vertices of a graph. This extends results of Cai and Chen (J. Comput. Syst. Sci. 54(3): 465–474, 1997), stating that the standard parameterizations of problems in MAX SNP and MIN F+Π1 are fixed-parameter tractable, and complements recent research on problems that do not admit polynomial kernelizations (Bodlaender et al. in J. Comput. Syst. Sci. 75(8): 423–434, 2009).  相似文献   

9.
In the k-Feedback Arc/Vertex Set problem we are given a directed graph D and a positive integer k and the objective is to check whether it is possible to delete at most k arcs/vertices from D to make it acyclic. Dom et al. (J. Discrete Algorithm 8(1):76–86, 2010) initiated a study of the Feedback Arc Set problem on bipartite tournaments (k-FASBT) in the realm of parameterized complexity. They showed that k-FASBT can be solved in time O(3.373 k n 6) on bipartite tournaments having n vertices. However, until now there was no known polynomial sized problem kernel for k-FASBT. In this paper we obtain a cubic vertex kernel for k-FASBT. This completes the kernelization picture for the Feedback Arc/Vertex Set problem on tournaments and bipartite tournaments, as for all other problems polynomial kernels were known before. We obtain our kernel using a non-trivial application of “independent modules” which could be of independent interest.  相似文献   

10.
The Hamiltonian Cycle problem is the problem of deciding whether an n-vertex graph G has a cycle passing through all vertices of G. This problem is a classic NP-complete problem. Finding an exact algorithm that solves it in ${\mathcal {O}}^{*}(\alpha^{n})$ time for some constant α<2 was a notorious open problem until very recently, when Björklund presented a randomized algorithm that uses ${\mathcal {O}}^{*}(1.657^{n})$ time and polynomial space. The Longest Cycle problem, in which the task is to find a cycle of maximum length, is a natural generalization of the Hamiltonian Cycle problem. For a claw-free graph G, finding a longest cycle is equivalent to finding a closed trail (i.e., a connected even subgraph, possibly consisting of a single vertex) that dominates the largest number of edges of some associated graph H. Using this translation we obtain two deterministic algorithms that solve the Longest Cycle problem, and consequently the Hamiltonian Cycle problem, for claw-free graphs: one algorithm that uses ${\mathcal {O}}^{*}(1.6818^{n})$ time and exponential space, and one algorithm that uses ${\mathcal {O}}^{*}(1.8878^{n})$ time and polynomial space.  相似文献   

11.
A planning and scheduling (P&S) system takes as input a domain model and a goal, and produces a plan of actions to be executed, which will achieve the goal. A P&S system typically also offers plan execution and monitoring engines. Due to the non-deterministic nature of planning problems, it is a challenge to construct correct and reliable P&S systems, including, for example, declarative domain models. Verification and validation (V&V) techniques have been applied to address these issues. Furthermore, V&V systems have been applied to actually perform planning, and conversely, P&S systems have been applied to perform V&V of more traditional software. This article overviews some of the literature on the fruitful interaction between V&V and P&S.  相似文献   

12.
The Parity Path problem is to decide if a given graph contains both an induced path of odd length and an induced path of even length between two specified vertices. In the related problems Odd Induced Path and Even Induced Path, the goal is to determine whether an induced path of odd, respectively even, length between two specified vertices exists. Although all three problems are NP-complete in general, we show that they can be solved in $\mathcal{O}(n^{5})$ time for the class of claw-free graphs. Two vertices s and t form an even pair in G if every induced path from s to t in G has even length. Our results imply that the problem of deciding if two specified vertices of a claw-free graph form an even pair, as well as the problem of deciding if a given claw-free graph has an even pair, can be solved in $\mathcal{O}(n^{5})$ time and $\mathcal{O}(n^{7})$ time, respectively. We also show that we can decide in $\mathcal{O}(n^{7})$ time whether a claw-free graph has an induced cycle of given parity through a specified vertex. Finally, we show that a shortest induced path of given parity between two specified vertices of a claw-free perfect graph can be found in $\mathcal {O}(n^{7})$ time.  相似文献   

13.
Kernelization algorithms for the cluster editing problem have been a popular topic in the recent research in parameterized computation. Most kernelization algorithms for the problem are based on the concept of critical cliques. In this paper, we present new observations and new techniques for the study of kernelization algorithms for the cluster editing problem. Our techniques are based on the study of the relationship between cluster editing and graph edge-cuts. As an application, we present a simple algorithm that constructs a 2k-vertex kernel for the integral-weighted version of the cluster editing problem. Our result matches the best kernel bound for the unweighted version of the cluster editing problem, and significantly improves the previous best kernel bound for the weighted version of the problem. For the more general real-weighted version of the problem, our techniques lead to a simple kernelization algorithm that constructs a kernel of at most 4k vertices.  相似文献   

14.
The Contractibility problem takes as input two graphs G and H, and the task is to decide whether H can be obtained from G by a sequence of edge contractions. The Induced Minor and Induced Topological Minor problems are similar, but the first allows both edge contractions and vertex deletions, whereas the latter allows only vertex deletions and vertex dissolutions. All three problems are NP-complete, even for certain fixed graphs H. We show that these problems can be solved in polynomial time for every fixed H when the input graph G is chordal. Our results can be considered tight, since these problems are known to be W[1]-hard on chordal graphs when parameterized by the size of H. To solve Contractibility and Induced Minor, we define and use a generalization of the classic Disjoint Paths problem, where we require the vertices of each of the k paths to be chosen from a specified set. We prove that this variant is NP-complete even when k=2, but that it is polynomial-time solvable on chordal graphs for every fixed k. Our algorithm for Induced Topological Minor is based on another generalization of Disjoint Paths called Induced Disjoint Paths, where the vertices from different paths may no longer be adjacent. We show that this problem, which is known to be NP-complete when k=2, can be solved in polynomial time on chordal graphs even when k is part of the input. Our results fit into the general framework of graph containment problems, where the aim is to decide whether a graph can be modified into another graph by a sequence of specified graph operations. Allowing combinations of the four well-known operations edge deletion, edge contraction, vertex deletion, and vertex dissolution results in the following ten containment relations: (induced) minor, (induced) topological minor, (induced) subgraph, (induced) spanning subgraph, dissolution, and contraction. Our results, combined with existing results, settle the complexity of each of the ten corresponding containment problems on chordal graphs.  相似文献   

15.
The Pathwidth One Vertex Deletion (POVD) problem asks whether, given an undirected graph?G and an integer k, one can delete at most k vertices from?G so that the remaining graph has pathwidth at most 1. The question can be considered as a natural variation of the extensively studied Feedback Vertex Set (FVS) problem, where the deletion of at most k vertices has to result in the remaining graph having treewidth at most 1 (i.e., being a forest). Recently Philip et?al. (WG, Lecture Notes in Computer Science, vol.?6410, pp.?196?C207, 2010) initiated the study of the parameterized complexity of POVD, showing a quartic kernel and an algorithm which runs in time 7 k n O(1). In this article we improve these results by showing a quadratic kernel and an algorithm with time complexity 4.65 k n O(1), thus obtaining almost tight kernelization bounds when compared to the general result of Dell and van Melkebeek (STOC, pp.?251?C260, ACM, New York, 2010). Techniques used in the kernelization are based on the quadratic kernel for FVS, due to Thomassé (ACM Trans. Algorithms 6(2), 2010).  相似文献   

16.
This paper describes a simple greedy Δ-approximation algorithm for any covering problem whose objective function is submodular and non-decreasing, and whose feasible region can be expressed as the intersection of arbitrary (closed upwards) covering constraints, each of which constrains at most Δ variables of the problem. (A simple example is Vertex Cover, with Δ=2.) The algorithm generalizes previous approximation algorithms for fundamental covering problems and online paging and caching problems.  相似文献   

17.
M. Praveen 《Algorithmica》2013,65(4):713-753
The coverability and boundedness problems for Petri nets are known to be Expspace-complete. Given a Petri net, we associate a graph with it. With the vertex cover number k of this graph and the maximum arc weight W as parameters, we show that coverability and boundedness are in ParaPspace. This means that these problems can be solved in space $\mathcal{O} ({\mathit{ef}}(k, W){\mathit{poly}}(n) )$ , where ef(k,W) is some super-polynomial function and poly(n) is some polynomial in the size of the input n. We then extend the ParaPspace result to model checking a logic that can express some generalizations of coverability and boundedness.  相似文献   

18.
We study the Cutwidth problem, where the input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2 k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2 n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless NP?coNP/poly. Our kernelization lower bound contrasts with the recent results of Bodlaender et al. (ICALP, Springer, Berlin, 2011; SWAT, Springer, Berlin, 2012) that both Treewidth and Pathwidth parameterized by vertex cover do admit polynomial kernels.  相似文献   

19.
We consider the $\mathcal{NP}$ -hard problem of finding a spanning tree with a maximum number of internal vertices. This problem is a generalization of the famous Hamiltonian Path problem. Our dynamic-programming algorithms for general and degree-bounded graphs have running times of the form $\mathcal{O}^{*}(c^{n})$ with c≤2. For graphs with bounded degree, c<2. The main result, however, is a branching algorithm for graphs with maximum degree three. It only needs polynomial space and has a running time of $\mathcal{O}(1.8612^{n})$ when analyzed with respect to the number of vertices. We also show that its running time is $2.1364^{k} n^{\mathcal{O}(1)}$ when the goal is to find a spanning tree with at least k internal vertices. Both running time bounds are obtained via a Measure & Conquer analysis, the latter one being a novel use of this kind of analysis for parameterized algorithms.  相似文献   

20.
In this paper, we present Para Miner which is a generic and parallel algorithm for closed pattern mining. Para Miner is built on the principles of pattern enumeration in strongly accessible set systems. Its efficiency is due to a novel dataset reduction technique (that we call EL-reduction), combined with novel technique for performing dataset reduction in a parallel execution on a multi-core architecture. We illustrate Para Miner’s genericity by using this algorithm to solve three different pattern mining problems: the frequent itemset mining problem, the mining frequent connected relational graphs problem and the mining gradual itemsets problem. In this paper, we prove the soundness and the completeness of Para Miner. Furthermore, our experiments show that despite being a generic algorithm, Para Miner can compete with specialized state of the art algorithms designed for the pattern mining problems mentioned above. Besides, for the particular problem of gradual itemset mining, Para Miner outperforms the state of the art algorithm by two orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号