首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The RF based single driver ?ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 1012 cm?3 is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm2 as observed in BATMAN.In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 1011 cm?3 has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated.  相似文献   

2.
36Cl AMS measurements at natural isotopic concentrations have yet been performed only at tandem accelerators with 5 MV terminal voltage or beyond. We have developed a method to detect 36Cl at natural terrestrial isotopic concentrations with a 3-MV system, operated above specifications at 3.5 MV.An effective separation was obtained with an optimized split-anode ionization chamber design (adopted from the ETH/PSI Zurich AMS group), providing a suppression factor of up to 30,000 for the interfering isobar 36S. Despite the good separation, a relatively high sulfur output from the ion source (36S?/35Cl?  4 × 10?10 for samples prepared from chemically pure reagents), and a possibly cross contamination resulted in a background corresponding to 36Cl/Cl  3 × 10?14. The method was applied to samples containing between 105 and 106 atoms 36Cl/g rock from sites in Italy and Iran, which were already investigated by other laboratories for surface exposure dating. The 36Cl/Cl ratios in the range from 2 × 10?13 to 5 × 10?12 show a generally good agreement with the previous results.These first measurements demonstrate that also 3-MV tandems, constituting the majority of dedicated AMS facilities, are capable of 36Cl exposure dating, which is presently the domain of larger facilities.  相似文献   

3.
Korea Superconducting Tokamak Advanced Research (KSTAR) is upgraded for its KSTAR 3rd campaign for new target mission to produce the D-shaped plasma with a target plasma current of 500 kA and/or pulse length of 5 s. New Plasma Facing Components (PFCs) are installed which leads to the increase of the surface area of the vessel by a factor of about 5. The vacuum conditioning such as the vessel baking has been performed in order to remove various kinds of impurities including H2O, carbon and oxygen for the plasma. The total outgassing rate in the KSTAR 1st campaign was measured as 1.5 × 10?4 mbar ? s?1 which is increased by a factor of 3 (6.49 × 10?4 mbar ? s?1) in the KSTAR 3rd campaign. Nevertheless, the outgassing rates per unit area have been decreased from 9.31 × 10?5 mbar ? m?2 s?1 to 1.22 × 10?5 mbar ? m?2 s?1 due to the upgrade of baking system and series of baking operation.  相似文献   

4.
Metal hyperaccumulators are a rare group of plant species that accumulate exceptionally high concentrations of metals in above ground tissues without showing symptoms of phytotoxicity. Quantitative localisation of the accumulated metals in seed tissues is of considerable interest to help understand the eco-physiology of these unique plant species. We investigated the spatial localisation of metals within seeds of Ni hyperaccumulating Hybanthus floribundus subsp. adpressus, H. floribundus subsp. floribundus and Pimelea leptospermoides and dual-metal (Cd and Zn) hyperaccumulating Thlaspi caerulescens using quantitative micro-proton induced X-ray emission (μ-PIXE) spectroscopy. Intact seeds were hand-sectioned, sandwiched between Formvar films and irradiated using the 3 MeV high energy heavy ion microprobe at ANSTO. Elemental maps of whole H. floribundus subsp. adpressus seeds showed an average Ni concentration of 5.1 × 103 mg kg?1 dry weight (DW) with highest Ni concentration in cotyledonary tissues (7.6 × 103 mg kg?1 DW), followed by the embryonic axis (4.4 × 103 mg kg?1 DW). Nickel concentration in whole H. floribundus subsp. floribundus seeds was 3.5 × 102 mg kg?1 DW without a clear pattern of Ni localisation. The average Ni concentration in whole P. leptospermoides seeds was 2.6 × 102 mg kg?1 DW, and Ni was preferentially localised in the embryonic axis (4.3 × 102 mg kg?1 DW). In T. caerulescens, Cd concentrations were similar in cotyledon (4.5 × 103 mg kg?1 DW) and embryonic axis (3.3 × 103 mg kg?1 DW) tissues, whereas Zn was highest in cotyledonary tissues (1.5 × 103 mg kg?1 DW). In all species, the presence of the accumulated metal within the cotyledonary and embryonic axis tissues indicates that the accumulated metal was able to move apoplastically within the seed.  相似文献   

5.
A comparative study was made between the compact AMS system at the PSI/ETH Laboratory of Ion Beam Physics in Zurich with 0.5 MV terminal voltage and the 5 MV-AMS system at the Scottish Universities Environmental Research Centre (SUERC), Glasgow. Overall 34 urinary samples with 41Ca/40Ca ratios in the range from 4 × 10?11 to 3 × 10?10 were processed to CaF2 and aliquots of the same material were measured on both instruments.Measurements on the compact AMS system were performed in charge state 3+ achieving a transmission of 4% at 1.7 MeV beam energy. Under these conditions a suppression of the interference 41K is virtually impossible. However, samples with an excess of potassium can be identified by a shift of the 41Ca/41K peak in the ΔE ? E histogram of the gas ionization detector employed and a criterion for data rejection can be defined. An overall precision of ~4% and a 41Ca/40Ca background level of 5 × 10?12 have been reached.For studies with higher demands on the detection limit AMS systems like the one at SUERC are attractive: in charge state 5+ and using a gas stripper beam energy of 27 MeV, a transmission of 5%, a 41K suppression factor of ~500 and a 41Ca/40Ca background level of 3 × 10?14 are achieved.We demonstrate that both systems are well suited for large-scale 41Ca biomedical applications.  相似文献   

6.
The new test facility ELISE (Extraction from a Large Ion Source Experiment) has been designed and installed since November 2009 at IPP Garching to support the development of the radio frequency driven negative ion source for the Neutral Beam System on ITER. The test facility is now completely assembled; all auxiliary systems have been commissioned and are operational. First plasma and beam operation is starting in October 2012.The source is designed to deliver an ion beam of 20 A of D? ions, operating at 0.3 Pa source pressure at an electron to ion current ratio below 1. Beam extraction is limited to 60 kV for 10 s every 3 minutes, while plasma operation of the source can be performed continuously for 1 hour. The ion source and extraction system have the same width as the ITER source, but only half the height, i.e. 1 × 1 m2 source area with an extraction area of 0.1 m2. The aperture pattern of the extraction system and the multi driver source concept stay as close as possible to the ITER design. Easy access to the source for diagnostic tools or modifications allows to analyze and optimize the source performance. Among other possibilities many different magnetic filter field configurations inside the source can be realized to enhance the negative ion extraction and to reduce the co-extraction of electrons. Beam power and profiles are measured by calorimetry and thermography on an inertially cooled target as well as by beam emission spectroscopy. Cs evaporation into the source is done via two dispenser ovens.  相似文献   

7.
Electrical properties of Si-implanted n-type GaN/AlGaN/GaN layers and contact resistances of ohmic electrodes (TiAl) formed on these layers have been examined. Experimental results have clearly shown that ohmic electrodes with a low specific-contact resistance of 1.4 × 10?7 Ω cm2 can be fabricated on the n-type layer having a low sheet resistance of 145 Ω/sq, which has been formed by the dual-energy Si ion implantation (80 keV:1.01 × 1015/cm2 + 30 keV:1.6 × 1014/cm2) and subsequent annealing at 1200 °C for 2 min using a Si3N4 layer as an encapsulant.  相似文献   

8.
In the design of new slant tube for large sample irradiation in the Ghana Research Reactor-1 facility, Monte Carlo N-Particle Code version 5 (MCNP-5) was employed to simulate the neutron flux profile of the new design. The results show that the neutron flux peaks at different points, at an average thermal neutron flux of (1.1406 ± 0.0046) × 1011, (1.1849 ± 0.0047) × 1011 and (1.0580 ± 0.0044) × 1011 n cm?2 s?1 around the reactor vessel. The first two peaks happened to coincide with pneumatic transfer pipes in the pool, but the third peak happened to be in line with the slant tube position. It was observed that as the diameter of the tube varies from 3.90 cm to 23.40 cm, the average thermal neutron flux decreased exponentially from (1.1849 ± 0.0047)1011 n cm?2 s?1 to (3.3241 ± 0.0100) × 1010 n cm?2 s?1. The average thermal neutron flux decreases exponentially along the diameter of the designed slant tube from (1.0366 ± 0.0042) × 1011 n cm?2 s?1 to (9.7396 ± 0.0136) × 109 n cm?2 s?1. From the results, it is evident that a slant tube of diameter 15.00 cm can be installed at the original slant tube position for large sample irradiation.  相似文献   

9.
The contribution of Ti K X-rays to total air kerma strength for low energy brachytherapy sources (125I and 103Pd) are calculated for different source-to-aperture distances of an indigenously designed free air ionization chamber. For 30 cm source-to-aperture distance, calculated contribution of Ti K X-rays is 4%. The Ti K X-rays can be eliminated by a relatively thin aluminum filter, but the primary photons emitted by the source will also be attenuated. This effect should be compensated by applying a suitable correction factor. The uncertainty in the attenuation correction factor has been also calculated for different thicknesses of aluminum by a Monte Carlo uncertainty analysis algorithm programmed in FORTRAN. The results show that the optimum thickness of the aluminum absorber is 100 μm, for which the contribution of Ti K X-rays in air kerma strength is reduced to less than one hundredth of the uncertainty in the correction factor, ensuring that the uncertainty in the air kerma strength will be mainly due to the uncertainty in the correction factor. The calculated uncertainties are 1.7 × 10?3, and 3.4 × 10?3 for 125I and 103Pd sources, respectively.  相似文献   

10.
In order to investigate the overall atomic hydrogen background and the dynamic characteristics of wall pumping/fuelling phenomenon, a permeation probe system has been developed and applied in the spherical tokamak QUEST. Reliability of measurements, within ±3% accuracy and a positive correlation with the hydrogen line emission over three orders of magnitude have been demonstrated for more than 3000 various plasma discharges. By comparison of the experimental permeation (flux) curves with the numerically simulated curves, the net incident atomic hydrogen flux is evaluated in the range of 1 × 1019 H m?2 s?1 to 4 × 1020 H m?2 s?1. The atomic flux has been investigated as a function of various plasma operation parameters like RF power, gas pressure and magnetic configuration. Using the static particle balance and permeation measurements, the progress in wall conditioning has been investigated. An inverse correlation between the atomic hydrogen flux and improvement in wall pumping has been observed over the two campaigns.  相似文献   

11.
Vacuum chambers of Steady State Superconducting (SST-1) Tokamak comprises of the vacuum vessel and the cryostat. The plasma will be confined inside the vacuum vessel while the cryostat houses the superconducting magnet systems (TF and PF coils), LN2 cooled thermal shields and hydraulics for these circuits. The vacuum vessel is an ultra-high (UHV) vacuum chamber while the cryostat is a high-vacuum (HV) chamber. In order to achieve UHV inside the vacuum vessel, it would be baked at 150 °C for longer duration. For this purpose, U-shaped baking channels are welded inside the vacuum vessel. The baking will be carried out by flowing hot nitrogen gas through these channels at 250 °C at 4.5 bar gauge pressure. During plasma operation, the pressure inside the vacuum vessel will be raised between 1.0 × 10?4 mbar and 1.0 × 10?5 mbar using piezoelectric valves and control system. An ultimate pressure of 4.78 × 10?6 mbar is achieved inside the vacuum vessel after 100 h of pumping. The limitation is due to the development of few leaks of the order of 10?5 mbar l/s at the critical locations of the vacuum vessel during baking which was confirmed with the presence of nitrogen gas and oxygen gas with the ratio of ~3.81:1 indicating air leak. Similarly an ultimate vacuum of 2.24 × 10?5 mbar is achieved inside the cryostat. Baking of the vacuum vessel up to 110 °C with ±10 °C deviation was achieved with a net mass flow rate of 0.8 kg/s at 1.5 bar gauge inlet pressure and supply temperature of 230 °C at the heater end. Also during gas feed system installation, the pressure inside the VV was raised from 3.01 × 10?5 mbar to 1.72 × 10?4 mbar by triggering a pulse of lower amplitude of 25 voltage direct current (VDC) for 100 s to piezoelectric valve. This paper describes in detail the design and implementation of the various vacuum subsystems including relevant experimental results.  相似文献   

12.
This article reviews 10 years of engineering and physics achievements by the Large Helical Device (LHD) project with emphasis on the latest results. The LHD is the largest magnetic confinement device among diversified helical systems and employs the world's largest superconducting coils. The cryogenic system has been operated for 50,000 h in total without any serious trouble and routinely provides a confining magnetic field up to 2.96 T in steady state. The heating capability to date is 23 MW of NBI, 2.9 MW of ICRF and 2.1 MW of ECH. Negative-ion-based ion sources with the accelerating voltage of 180 keV are used for a tangential NBI with the power of 16 MW. The ICRF system has full steady-state operational capability with 1.6 MW. In these 10 years, operational experience as well as a physics database have been accumulated and the advantages of stable and steady-state features have been demonstrated by the combination of advanced engineering and the intrinsic physical advantage of helical systems in LHD. Highlighted physical achievements are high beta (5% at the magnetic field of 0.425 T), high density (1.1 × 1021 m?3 at the central temperature of 0.4 keV), high ion temperature (Ti of 5.2 keV at 1.5 × 1019 m?3), and steady-state operation (3200 s with 490 kW). These physical parameters have elucidated the potential of net-current free helical plasmas for an attractive fusion reactor. It also should be pointed out that a major part of these engineering and physics achievements is complementary to the tokamak approach and even contributes directly to ITER.  相似文献   

13.
Polyimide (PI), polyetheretherketone (PEEK) and polyethyleneterephthalate (PET) were implanted with 40 keV Ni+ ions at room temperature at fluences ranging from 1.0 × 1016 to 1.5 × 1017 ions cm?2 and with ion current density varying between 4 and 10 μA cm?2. The depth profiles of the implanted Ni atoms determined by the RBS technique were compared with those predicted by the SRIM and TRIDYN codes. Hydrogen depletion as a function of the ion fluence was determined by the ERDA technique, and the compositional and structural changes of the polymers were characterised by the UV–vis and XPS methods. The implanted profiles differed significantly from those predicted by the SRIM code while the lower fluences were satisfactorily described by the TRIDYN simulation. A significant hydrogen release from the polymer surface layer was observed along with significant changes in the surface layer composition. The UV–vis results indicated an increase in the concentration and conjugation of double bonds.  相似文献   

14.
Fe ion implantation in GaN has been investigated by means of ion beam analysis techniques. Implantations at an energy of 150 keV and fluences ranging from 2 × 1015 to 1 × 1016 cm?2 were done, both at room temperature and at 623 K. Secondary Ions Mass Spectrometry was used to determine the Fe implantation profiles, whereas Rutherford Backscattering in channeling conditions with a 2.2 MeV 4He+ beam allowed us to follow the damage evolution. Particle Induced X-ray Emission in channeling conditions with a 2 MeV H+ beam was employed to study the lattice location of Fe atoms after implantation. The results show that a high fraction of Fe-implanted atoms are located in high symmetry sites in low fluence implanted samples, where the damage level is lower, whereas the fraction of randomly located Fe atoms increases by increasing the fluence and the resulting damage. Moreover, dynamical annealing present in high temperature implantation has been shown to favor the incorporation of Fe atoms in high symmetry sites.  相似文献   

15.
A study of the effects of Ar ion implantation on the structural transformation of single crystal Si investigated by confocal Raman spectroscopy is presented. Implantation was performed at 77 K using 150 keV Ar++ with fluences ranging from 2 × 1013 to 1 × 1015 ions/cm2. The Raman spectra showed a progression from crystalline to highly disordered structure with increasing fluence. The 520 cm?1 c-Si peak was seen to decrease in intensity, broaden and exhibit spectral shifts indicating an increase in lattice disorder and changes in the residual stress state. In addition, an amorphous Si band first appeared as a shoulder on the 520 cm?1 peak and then shifted to lower wavenumbers as a single broadband peak with a spectral center of 465 cm?1. Additionally, the emergence of the a-Si TA phonon band and the decrease of the c-Si 2TA and 2TO phonon bands also indicated the same structural transition from crystalline to highly disordered. The Raman results were compared to those obtained by channeling RBS.  相似文献   

16.
Ion implantation induced defects and their consequent electrical impact have been investigated. Unintentionally doped n-type gallium nitride was implanted with 100 keV Si+ and 300 keV Ar+ ions in a fluence range of 1014–1015 ions/cm2. The samples were characterized with Rutherford backscattering/Channeling method for damage buildup. Time of flight elastic recoil detection analysis was implied on the Si implanted samples to see the ion depth distribution. Ar implanted GaN samples were studied electrically with scanning spreading resistance microscopy. Our results show that an Ar fluence of 5 × 1014 cm?2 increases the resistance by five orders of magnitude to a maximum value. For the highest fluence, 6 × 1015 cm?2, the resistivity decreases by two orders of magnitude.  相似文献   

17.
Fluorescent soft X-ray carbon Kα emission spectra (XES) have been used to characterize the bonding of carbon atoms in polyimide (PI) and polycarbosilane (PCS) films. The PI films have been irradiated with 40 keV nitrogen or argon ions, at fluences ranging from 1 × 1014 to 1 × 1016 cm−2. The PCS films have been irradiated with 5 × 1015 carbon ions cm−2 of 500 keV and/or annealed at 1000°C. We find that the fine structure of the carbon XES of the PI films changes with implanted ion fluence above 1 × 1014 cm−2 which we believe is due to the degradation of the PI into amorphous C:N:O. The width of the forbidden band as determined from the high-energy cut-off of the C Kα X-ray excitation decreases with the ion fluence. The bonding configuration of free carbon precipitates embedded in amorphous SiC which are formed in PCS after irradiation with C ions or combined treatments (irradiation and subsequent annealing) is close to either to that in diamond-like films or in silicidated graphite, respectively.  相似文献   

18.
The study presents an investigation of damage evolution of yttria-stabilized zirconia (YSZ) induced by irradiation of 100 keV He ions at room temperature as a function of fluence. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) were used in order to study the nature and evolution of structural damage at different levels. Our study shows that various kinds of defects are formed with the increasing fluence. Firstly, at low fluences, from 1 × 1016 to 4 × 1016 cm?2, of which maximum values of displacement per atom (dpa) range from 0.29 to 1.17, an elastic strain which is attributed to the accumulation of irradiation-induced discrete point defects, is presented. Secondly, in the intermediate fluences ranging from 8 × 1016 to 1 × 1017 cm?2 with corresponding dpa varying from 2.33 to 2.91, a large drop of elastic strain occurs accompanied by presence of an intensive damage region, which is comprised by large and interacted defect clusters. Thirdly, at the two high fluences of 2 × 1017 and 4 × 1017 cm?2, of which dpa are 5.83 and 11.65 respectively, a great amount of ribbon-like He bubbles with granular structure and cracks are presented at the depth of maximum concentration of deposited He atoms. The structural damage evolution and the mechanism of formation of He bubbles are discussed.  相似文献   

19.
Following the installation and acceptance test of the French 5 MV AMS facility ASTER, the focus has been on improving the capability for routine measurements of 10Be and 26Al. Quality assurance has been established by the introduction of traceable AMS standards for each nuclide, by self-monitoring through participation in round-robin exercises and proficiency testing, and by surveillance of long- and short-time variability of blank and reference materials. A background level of 3 × 10?14 makes ASTER well-suited for measuring 41Ca/40Ca in the10?12 region, which is sufficient for a wide range of applications. Routine AMS measurements of volatile elements like 36Cl and 129I will most likely become feasible in the very near future as the result of significant improvements in the ion source design.  相似文献   

20.
We determined the overall efficiency for 10Be of the high-intensity LLNL modified Middleton cesium sputter source in combination with the CAMS FN mass spectrometer. BeO? ionization efficiency is >3%. Charge exchange efficiency including transmission through the tandem for 7.5 MeV Be+3 is ~34%, resulting in a total system efficiency of just over 1%. At this efficiency and with very low backgrounds, we estimate our detection limit to be ~1000 10Be atoms. Cathodes prepared with only ~80 μg of 9Be show only an ~33% reduction in 9Be beam current compared to a sample with ~200 μg. These same samples, prepared from 07KNSTD1032 standard material, contained 1 × 107 and 5 × 106 10Be atoms and exhibited similar ionization and total system efficiency. These results demonstrate the feasibility of pursuing applications that require precise measurement of samples with low 10Be concentrations and/or small sample size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号