首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《Microelectronics Reliability》2014,54(12):2760-2765
A bottom-gate/top-drain/source contact ZnO nanoparticle thin-film transistor was fabricated using a low temperature annealing process (150 °C) suitable for flexible electronics. Additionally, a high-k resin filled with TiO2 nanoparticles was used as gate dielectric. After fabrication, the transistors presented almost no hysteresis in the IV curve, a threshold voltage (VT) of 2.2 V, a field-effect mobility on the order of 0.1 cm2/V s and an ION/IOFF ratio of about 104. However, the transistor is sensitive to aging effects due to interactions with the ambient air, resulting in current level reduction caused by trapped oxygen at the nanoparticle surface, and an anti-clockwise hysteresis in the transfer curve. It was demonstrated, conjointly, the possible desorption of oxygen by voltage stress and UV light exposure.  相似文献   

2.
We report on the fabrication and electrical characterization of deep sub-micron (gate length down to 105 nm) GeOI pMOSFETs. The Ge layer obtained by hetero-epitaxy on Si wafers has been transferred using the Smart CutTM process to fabricate 200 mm GeOI wafers with Ge thickness down to 60–80 nm. A full Si MOS compatible pMOSFET process was implemented with HfO2/TiN gate stack. The electrical characterization of the fabricated devices and the systematic analysis of the measured performances (ION, IOFF, transconductance, low field mobility, S, DIBL) demonstrate the potential of pMOSFET on GeOI for advanced technological nodes. The dependence of these parameters have been analyzed with respect to the gate length, showing very good transport properties (μh  250 cm2/V/s, ION = 436 μA/μm for LG = 105 nm), and OFF current densities comparable or better than those reported in the literature.  相似文献   

3.
Methylammonium-tin-iodide (MASnxI3, 0.9 ≤ x ≤ 1.1) systems were prepared by precipitation process in aqueous solutions. The “as prepared” MASnxI3 systems exhibited a tetragonal crystalline phase (space group I4cm) with polyhedral crystallites (length 50–400 µm). The as prepared samples were annealed at T = 150 °C for t = 8 h under nitrogen and synthetic air. Under nitrogen, the CH3NH3SnxI3 systems adopt nearly-cubic tetragonal structure (space group P4mm) with crystallites of 2–4 µm length whereas a degradation process with formation of non-crystalline phases occurred in air. The differential thermal analysis (DTA) profile in nitrogen revealed events at T = 247 °C, T = 297 °C (decomposition of CH3NH3SnxI3 systems into methylamine (CH3NH2), hydroiodic acid (HI) and SnI2), and in the range T = 342–373 °C (melting of SnI2) respectively. The thermal profile in air showed endothermic events at T = 139 °C and T = 259 °C with additional events at onset temperatures of T = 337 °C and T = 423 °C respectively which correspond to the formation of Sn(IV)-O binds and to the decomposition of methylamine. Static thermogravimetry analysis (TG), performed at T = 85 °C and T = 150 °C for t = 2 h, revealed a linear weight loss as a function of the time. The optical absorption spectra displayed absorbance edges in near infrared range, at 1107.0 nm (x = 0.9), 1098.6 nm (x = 1.0) and 1073.2 nm (x = 1.1) respectively.  相似文献   

4.
《Applied Superconductivity》1997,5(7-12):319-325
We have fabricated NbN Josephson junctions with NbNx barriers formed by plasma nitridation on the surface of the base superconductive NbN layer. Both nonhysteretic junctions (overdamped junctions) and small-hysteretic ones have been obtained at 4.2 K by changing plasma nitridation conditions. An overdamped junction showed a product of the critical current Ic and junction resistance Rn (an IcRn product) of 0.95 mV at 4.2 K and the Ic exponentially decreased with increasing temperature. On the other hand, a small-hysteretic junction showed Superconductor-Insulator-Superconductor (SIS)-like characteristics in the temperature dependence of Ic and its current–voltage characteristics changed to nonhysteretic ones at the temperature more than 8 K. The IcRn product for the junction was 0.91 mV at 8.2 K.  相似文献   

5.
High dielectric constant TiSiOx thin films are produced by reactive sputtering under different oxygen partial pressure ratio (PO2) from 15% to 30%. All the TiSiOx films show an excellent transmittance value of almost 95%. The TiSiOx film has a low leakage current density by optimizing oxygen partial pressure, and the leakage current density of TiSiOx film under PO2 of 20% is 4.88×10−7 A/cm2 at electrical field strength of 2 MV/cm. Meanwhile, their associated InGaZnO thin-film transistors (IGZO-TFTs) with different PO2 TiSiOx thin films as gate insulators are fabricated. IGZO-TFTs under PO2 of 20% shows an optimized electrical performance, and the threshold voltage, sub-threshold swing, field effect mobility and Ion/Ioff ratio of this device are 2.22 V, 0.33 V/decade, 29.3 cm2/V s and 5.03×107, respectively. Moreover, the density of states (DOS) is calculated by temperature-dependent field-effect measurement. The enhancements of electrical performance and temperature stability are attributed to better active/insulator interface and smaller DOS.  相似文献   

6.
Benzopyrazine-fused tetracene (TBPy) and its disulfide (TBPyS) bearing alkoxy groups (OCH3, OC8H17) were designed and synthesized to obtain π-expanded tetracene derivatives. These derivatives are featured with long-wavelength light absorption property (λonset: up to 820 nm), photooxidative stability (half-lives (τ1/2): 11 times longer than tetracene), and solubility for solution process. The methoxy compounds (TBPy-C1 and TBPyS-C1) were used for single-crystal X-ray crystallographic analysis and single-crystal organic field-effect transistor (OFET) devices showing relationship between packing structures and hole mobilities. The octyloxy compounds (TBPy-C8 and TBPyS-C8) were investigated on solution-processed thin-film formation and hole transport property in thin-film OFET devices. Crystalline mesophase of TBPy-C8 and TBPyS-C8 was characterized by differential scanning calorimetry analysis showing endothermic peaks at 98 and 198 °C on its second heating process and exothermic peaks at 177 and 76 °C on its second cooling process for TBPyS-C8, and played crucial roles in thin-films formation. Hole mobility of 1.7 × 10?2 cm2/V s (with Vth = ?30 V and ION/IOFF = 104) was obtained for the thin-film OFET device of TBPyS-C8.  相似文献   

7.
《Applied Superconductivity》1996,4(10-11):487-493
Biaxially aligned yttria-stabilized zirconia (YSZ) films on Ni-based alloy substrates were realized with high deposition rate of 0.5 μm min−1 by the inclined substrate deposition (ISD) technique without ion beam assistance. The microstructure of YSZ was examined to study the growth mechanism of biaxial alignment by ISD. Columnar structures toward the plasma plume suggested a self-shadowing effect in the ISD process. To raise Ic values, YBCO thickness was increased up to 5 μm. Thick YBCO films with high Jc values were realized on the ISD-grown YSZ. Long YBCO tapes with biaxial alignment were successfully fabricated using continuous pulsed laser deposition and a high Ic value of 37.0 A (77.3 K, 0 T) at a 75 cm voltage tap spacing was achieved.  相似文献   

8.
Thin film transistors (TFTs) with bottom gate and staggered electrodes using atomic layer deposited Al2O3 as gate insulator and radio frequency sputtered In–Ga–Zn Oxide (IGZO) as channel layer are fabricated in this work. The performances of IGZO TFTs with different deposition temperature of Al2O3 are investigated and compared. The experiment results show that the Al2O3 deposition temperature play an important role in the field effect mobility, Ion/Ioff ratio, sub-threshold swing and bias stability of the devices. The TFT with a 250 °C Al2O3 gate insulator shows the best performance; specifically, field effect mobility of 6.3 cm2/Vs, threshold voltage of 5.1 V, Ion/Ioff ratio of 4×107, and sub-threshold swing of 0.56 V/dec. The 250 °C Al2O3 insulator based device also shows a substantially smaller threshold voltage shift of 1.5 V after a 10 V gate voltage is stressed for 1 h, while the value for the 200, 300 and 350 °C Al2O3 insulator based devices are 2.3, 2.6, and 1.64 V, respectively.  相似文献   

9.
In this work, the scalability of alternative channel material double gate nano nMOSFETs has been investigated by the mean of semi-analytical models of Ion/Ioff currents, accounting for quantum capacitance degradation, short channel effects, band-to-band and source-to-drain tunnelling in arbitrary substrate and channel direction.Contrary to most of the previous study neglecting source-to-drain tunnelling, it has been found that for devices with physical gate length below 13 nm (as required in the 22 and 16 nm nodes), this mechanism significantly penalises the Ion/Ioff trade off of small effective masses channel materials like Ge or GaAs, much more than in the case of Si and biaxially strained Si (s-Si). In addition, only strained Si-MOSFETs has been found to meet the performance expectation of the International Technology Roadmap of Semiconductor for the 22 nm and 16 nm technological nodes.  相似文献   

10.
We report the synthesis, characterization and behavior in field-effect transistors of non-functionalized soluble diketopyrrolopyrrole (DPP) core with only a solubilizing alkyl chain (i.e. –C16H33 or –C18H37) as the simplest p-channel semiconductor. The characteristics were evaluated by UV–vis and fluorescence spectroscopy, X-ray diffraction, cyclic voltammetry (CV), thermal analysis, atomic force microscopy (AFM) and density functional theory (DFT) calculation. For top-contact field-effect transistors, two types of active layers were prepared either by a solution process (as a 1D-microwire) or thermal vacuum deposition (as a thin-film) on a cross-linked poly(4-vinylphenol) gate dielectric. All the devices showed typical p-channel behavior with dominant hole transports. The device made with 1D-microwiress of DPP-R18 showed field-effect mobility in the saturation region of 1.42 × 10?2 cm2/V s with ION/IOFF of 1.82 × 103. These findings suggest that the non-functionalized soluble DPP core itself without any further functionalization could also be used as a p-channel semiconductor for low-cost organic electronic devices.  相似文献   

11.
The thermal evolution of defects induced in 4H–SiC by multiple implantation of C ions was investigated by Low Temperature Photoluminescence in the temperature range 450–1000 K. The photoluminescence spectra show sharp luminescent lines (alphabet lines) in the wavelength range 426–440 nm upon irradiation and thermal treatment at 450 K induces the appearance of a new line at 427 nm (DI centre). The trend shown by the luminescence lines as a function of the temperature is quite complex. The alphabet lines intensity increases up to 850 K, whereas at higher temperature decreases with an activation energy of 2.0 eV, suggesting that the defect, responsible for these lines, is the Si-vacancy. The luminescence yield of DI centre is always increasing as a function of the temperature, with a higher slope from 750 K, suggesting a correlation to the reconfiguration and to the annealing of point defects.  相似文献   

12.
This paper proposes a method which can separate the parasitic effect from the drain current Id vs. gate voltage Vg curves of MOSFETs, then uses this method to analyze degradation of experimental pMOSFETs due to hot-electron-induced punchthrough (HEIP). An Id vs. Vg curve of the parasitic MOSFET formed by a shallow trench isolation (STI) is obtained by extrapolating the line of Id vs. channel width W at each Vg to W = 0 μm. The Id vs. Vg curves of the parasitic MOSFET indicate that HEIP caused electron trapping at the interface between SiN and the sidewall oxide of STI, but the curves of the main MOSFET indicate that HEIP caused negative oxide charges and positive interface traps in the channel region. These charges and traps decreased the threshold voltage Vth of the parasitic MOSFET but increased Vth of the main MOSFET. These two opposite behaviors of Vth resulted in little HEIP-induced shift of Vth at W = 2.5 μm. | Vd | to secure ten-year HEIP lifetime of 10% shift of Vth was ≤ 2.2 V at W = 0.3 μm, ≤ 3.5 V at W = 1.0 μm, and ≤ 3.6 V at W = 10 μm; these changes indicate that degradation of parasitic MOSFET influences the HEIP lifetime of narrow pMOSFET significantly.  相似文献   

13.
Al-doped ZnO (AZO) film was deposited by direct-current (DC) magnetron sputtering on p-Si (1 0 0) wafer to fabricate Al-doped n-ZnO/p-Si heterojunctions. The microstructural, optical and electrical properties of the AZO film were characterized by XRD, SEM; UV–vis spectrophotometer; four-point probe and Hall effect measurement, respectively. Results show that the AZO film is of good quality. The electrical junction properties were investigated by I–V measurement, which reveals that the heterojunction shows rectifying behavior under a dark condition. The ideality factor and the saturation current of this diode are 20.1 and 1.19×10−4 A, respectively. The value of IF/IR (IF and IR stand for forward and reverse current, respectively) at 5 V is found to be as high as 19.7. It shows fairly good rectifying behavior, indicating formation of a diode between AZO and p-Si. High photocurrent is obtained under a reverse bias when the crystalline quality of AZO film is good enough to transmit light into p-Si.  相似文献   

14.
The Pt nano-film Schottky diodes on Ge substrate have been fabricated to investigate the effect of annealing temperature on the characteristics of the device. The germanide phase between Pt nano-films and Ge substrate changed and generated interface layer PtGe at 573 K and 673 K, Pt2Ge3 at 773 K. The current–voltage(I - V) characteristics of Pt/n-Ge Schottky diodes were measured in the temperature range of 183–303 K. Evaluation of the I - V data has revealed an increase of zero-bias barrier height ΦB0 but the decrease of ideality factor n with the increase in temperature. Such behaviors have been successfully modeled on the basis of the thermionic emission mechanism by assuming the presence of Gaussian distributions. The variation of electronic transport properties of these Schottky diodes has been inferred to be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Therefore, the control of Schottky barrier height at metal/Ge interface is important to realize high performance Ge-based CMOS devices.  相似文献   

15.
In order to evaluate current conduction mechanism in the Au/n-GaAs Schottky barrier diode (SBD) some electrical parameters such as the zero-bias barrier height (BH) Φbo(IV) and ideality factor (n) were obtained from the forward bias current–voltage (IV) characteristics in wide temperature range of 80–320 K by steps of 10 K. By using the thermionic emission (TE) theory, the Φbo(IV) and n were found to depend strongly on temperature, and the n decreases with increasing temperature while the Φbo(IV) increases. The values of Φbo and n ranged from 0.600 eV and 1.51(80 K) to 0.816 eV and 1.087 (320 K), respectively. Such behavior of Φbo and n is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution (GD) of BHs at Au/n-GaAs interface. In the calculations, the electrical parameters of the experimental forward bias IV characteristics of the Au/n-GaAs SBD with the homogeneity in the 80–320 K range have been explained by means of the TE, considering GD of BH with linear bias dependence.  相似文献   

16.
We fabricated TiO2 thin films the by sol–gel process. Successful IV curves can be obtained in the Cu/TiO2/ATO structure device in which TiO2 thin film was calcined at 300 °C. The bipolar resistive switching behavior was observed and the ratio of Roff/Ron can be increased to 104. The switching voltage changes from 4.8 to 3.5 V when the current compliance drops from 10 to 0.1 mA. We also investigated the microstructure by HRTEM technology.  相似文献   

17.
All RF sputtering-deposited Pt/SiO2/n-type indium gallium nitride (n-InGaN) metal–oxide–semiconductor (MOS) diodes were investigated before and after annealing at 400 °C. By scanning electron microscopy (SEM), the thickness of Pt, SiO2, n-InGaN layer was measured to be ~250, 70, and 800 nm, respectively. AFM results also show that the grains become a little bigger after annealing, the surface topography of the as-deposited film was smoother with the rms roughness of 1.67 nm and had the slight increase of 1.92 nm for annealed sample. Electrical properties of MOS diodes have been determined by using the current–voltage (IV) and capacitance–voltage (CV) measurements. The results showed that Schottky barrier height (SBH) increased slightly to 0.69 eV (IV) and 0.82 eV (CV) after annealing at 400 °C for 15 min in N2 ambient, compared to that of 0.67 eV (IV) and 0.79 eV (CV) for the as-deposited sample. There was the considerable improvement in the leakage current, dropped from 6.5×10−7 A for the as-deposited to 1.4×10−7 A for the 400 °C-annealed one. The annealed MOS Schottky diode had shown the higher SBH, lower leakage current, smaller ideality factor (n), and denser microstructure. In addition to the SBH, n, and series resistance (Rs) determined by Cheungs׳ and Norde methods, other parameters for MOS diodes tested at room temperature were also calculated by CV measurement.  相似文献   

18.
To enhance cell endurance window of a split gate flash memory, we used a ramp pulse with long rising time to replace the conventional square pulse for programming. The change is based on the study of the electric field at electron injection point (EG) related to programming time. Statistic measurements on various samples including different technologies, cell locations (even or odd) and rise times were done. The results confirm that the read currents shift under erase state (ΔIr1) could be improved significantly with an acceptable programming speed by the proposed method.For example, as increasing the rising time from 0.1 μs to 20 μs for the conventional square pulse and the ramp pulse respectively, after 1 M cycling the ΔIr1 is reduced from 64.8% to 36.2% with an acceptable minimum programming time of 12.5 μs.  相似文献   

19.
The effects of the physical channel width on the characteristics of organic thin film transistors (OTFTs), made with 6,13-bis(triisopropyl-silylethynyl)-pentacene (TIPS-pentacene) embedded into poly-triarylamine (PTAA, hole conductor within an active channel), have been examined in this paper. The devices are estimated by measuring the drain-source current (IDS) for different contact metals such as Au and Ag, at fixed gate and drain voltages. The results show that the threshold voltage (VT) and IDS increase with increasing channel width. Furthermore, it has been observed that the field effect mobility is dependent on VT, which is influenced by the channel width. The OTFTs, produced using Au and Ag contacts, exhibited the highest values of mobility in the saturation regime, namely 5.44 × 10?2 and 1.33 × 10?2 cm2/Vs, respectively.  相似文献   

20.
This work addresses a fundamental problem of vertical MOSFETs, that is, inherently deep junctions that exacerbate short channel effects (SCEs). Due to the unconventional asymmetric junction depths in vertical MOSFETs, it is necessary to look separately at the electrostatic influence of each junction. In order to suppress short channel effects better, we explore the formation of a shallow drain junction. This is realized by a self-aligned oxide region, or junction stop (JS) which is formed at the pillar top and acts as a diffusion barrier for shallow junction formation. The benefits of using a JS structure in vertical MOSFETs are demonstrated by simulations which show clearly the effect of asymmetric junctions on SCEs and bulk punch-through. A critical point is identified, where control of SCEs by junction depth is lost and this leads to appropriate junction design in JS vertical sidewall MOSFETs. For a 70 nm channel length the JS structure improves charge sharing by 54 mV and DIBL by 46 mV. For body dopings of 5.0 × 1017 cm?3 and 6.0 × 1017 cm?3 the JS gives improvements in Ioff of 58.7% and 37.8%, respectively, for a given Ion. The inclusion of a retrograde channel gives a further increase in Ion of 586 μA/μm for a body doping of 4.0 × 1018 cm?3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号