首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为了对高瓦斯工作面采空区抽采钻场进行设计,使采空区及工作面上隅角瓦斯得到有效控制,通过数值模拟分析了采场覆岩结构及裂隙发育规律;根据模拟结果利用实验室试验分析了抽采钻孔在不同位置时采空区瓦斯的运移规律,得出终孔位置距煤层顶板上方30m左右,距回风巷水平距离10~20m时抽采效果最佳;且终孔高度应根据工作面覆岩结构形态有所区别,靠近回风巷的钻孔高度应控制在规则冒落带上部,靠近工作面中部的钻孔应布置在裂隙带内。  相似文献   

2.
为治理特厚煤层大采高综放面"远场"瓦斯,以塔山矿8214工作面为研究背景,运用"O"形圈理论,分析了煤层瓦斯在采空区上覆岩层裂隙中流动特征。研究发现,地面"L"型钻孔的终孔点层位位于"远场"瓦斯富集区内。因此,采用地面"L"型钻孔抽采技术治理"远场"瓦斯,对比分析了实施地面"L"型钻孔抽采"远场"瓦斯前后,顶板巷的瓦斯浓度的变化规律。研究表明,实施地面"L"型钻孔后,顶板巷的瓦斯浓度出现明显的降低,且顶板巷的瓦斯浓度趋于平缓,变化幅度不大,基本维持在2.5%左右。因此,地面"L"型钻孔很好的分担了顶板巷的抽采压力,保障矿井的安全生产。  相似文献   

3.
为了解决综采工作面采空区瓦斯向回采空间和回风隅角涌出而造成的局部瓦斯积聚和超限问题,沿煤层顶板裂隙发育带施工走向高位抽采巷,对采空区瓦斯进行抽采。通过对走向高位抽采巷抽采采空区瓦斯效果和对回风流、回风隅角瓦斯浓度的影响分析,得出走向高位抽采巷末端进入采空区40 m左右时,抽采效果达到峰值,并基本稳定,解决了综采工作面生产期间回风流、回风隅角瓦斯治理难题,杜绝了瓦斯超限事故。  相似文献   

4.
针对成庄矿U型通风综采工作面回风上隅角瓦斯易积聚、不可控等问题,采用采空区大流量埋管抽放、采空区顶板走向长钻孔抽采、地面采动区L型井抽采和上隅角导风筒抽放综合治理措施,对4322综采工作面的治理效果进行跟踪考察,统计工作面回采期间风排瓦斯量、瓦斯抽采量和绝对瓦斯涌出量的变化对应关系,瓦斯抽采量占比工作面绝对瓦斯涌出量平均值达到70%,上隅角瓦斯浓度可控制在0.8%以下,回风巷瓦斯浓度可控制在0. 6%以下,证明了瓦斯综合治理措施效果良好,U型通风综采工作面实现了安全生产。  相似文献   

5.
淮南矿区地面钻井抽采瓦斯技术实践   总被引:1,自引:0,他引:1  
在应用地面钻井抽采矿井采空区瓦斯的过程中,为了提高地面钻孔的稳定性及瓦斯抽采效果,采用CFD数值模拟和考察试验的方法研究了影响地面钻孔抽采效果和服务期限的不同因素.研究结果表明:地面钻井抽采将很大程度上减小工作面回风流的瓦斯含量,且抽采效果受到煤层条件和钻井位置的制约,通过对试验钻井破坏情况分析,钻井布置在靠近回风巷侧30m以内,可能会提高钻井的稳定性和服务期限.本文对地面钻井抽采采空区瓦斯技术的推广应用具有重要的指导意义.  相似文献   

6.
在建立了采动区瓦斯流动模型方程的基础上,以新疆1930煤矿24312工作面为工程背景,在煤层采动期间对抽采井不同井位、钻井直径、钻井深度的瓦斯抽采效果进行了模拟。计算结果表明:不同工况条件下的抽采井内流速、浓度明显不同,以360 d为抽采期限,当地面井距离回风巷侧壁30 m左右、终孔位于煤层中部、钻井直径210 mm的工况,在该条件下取得了最大的瓦斯抽采量。并以此数值模拟结果来指导运用24312工作面地面井施工,地面井经过180 d运行,回风巷瓦斯降至先前浓度的60%,上隅角瓦斯浓度降至52%。两侧瓦斯浓度下降明显,消除了工作面瓦斯超限的威胁。该模拟结果可为类似采动区地面井的布置提供参考。  相似文献   

7.
为防止被保护层卸压瓦斯大量涌向保护层工作面,进而造成Y型通风工作面回风巷和采空区瓦斯超限,依据保护层开采卸压理论以及采空区上覆岩层“裂隙三带”中的瓦斯运移规律,采用在Y型通风工作面布置高位钻孔抽采被保护层卸压瓦斯,并在羊东矿现场对高位钻孔关键参数进行了设计,终孔位置高度设计为24 m,倾向控制范围设计为9.5~60.0 m,终孔间距设计为10 m.现场应用结果表明:高位钻孔瓦斯抽采率为60.8%,回风巷平均瓦斯体积分数维持在0.27%,最高为0.46%,杜绝了Y型通风工作面回风巷和采空区瓦斯超限.  相似文献   

8.
煤矿采动区地面井瓦斯抽采技术及其应用前景分析   总被引:2,自引:0,他引:2  
针对我国煤层松软、低渗、抽采困难的问题,提出了充分利用煤层采动卸压效应强化抽采煤层解吸瓦斯和工作面涌出瓦斯的采动区地面井抽采技术。从资源评价、井型设计、地面布井、局部防护、安全抽采控制等关键技术和成套技术的应用效果及发展前景等方面对煤矿采动区瓦斯地面井抽采技术在瓦斯治理方面的应用进行了深入分析,指出煤矿采动区地面井抽采瓦斯技术是进行煤矿区瓦斯灾害综合治理的一条有效途径;提出了进行煤矿区煤层气规模化开发、有效治理井下瓦斯灾害的合理化建议:地面井布井应偏向工作面回风巷侧,井型结构应充分发挥采场裂隙带的作用。  相似文献   

9.
为加强胡底煤业1301(上)采煤工作面瓦斯治理,设计并实施了一口L型井对井下采空区瓦斯进行抽采,分析和评价了L型井抽采过程及抽采效果。结果表明:L型井距离3#煤层9~12倍采高为最佳层位;L型井布置角度应与煤层倾角保持一致并尽量布置在同一岩层中时,避免穿层发生塌孔;L型井应与回风巷保持一定距离,最佳距离在40~70m;L型井能有效降低上隅角及工作面回风流中的瓦斯浓度,瓦斯抽采效果明显。研究成果为将来L型井的设计及施工提供了良好基础和借鉴。  相似文献   

10.
淮南矿区地面钻井抽采瓦斯技术实践   总被引:13,自引:0,他引:13  
在应用地面钻井抽采矿井采空区瓦斯的过程中,为了提高地面钻孔的稳定性及瓦斯抽采效果,采用CFD数值模拟和考察试验的方法研究了影响地面钻孔抽采效果和服务期限的不同因素.研究结果表明地面钻井抽采将很大程度上减小工作面回风流的瓦斯含量,且抽采效果受到煤层条件和钻井位置的制约.通过对试验钻井破坏情况分析,钻井布置在靠近回风巷侧30 m以内,可能会提高钻井的稳定性和服务期限.本文对地面钻井抽采采空区瓦斯技术的推广应用具有重要的指导意义.  相似文献   

11.
郭长恒  邢玉忠 《中国矿业》2020,29(4):97-103
高瓦斯矿井易自燃煤层,工作面受上隅角瓦斯超限与采空区遗煤自燃双重威胁。为解决高抽巷抽采瓦斯导致采空区氧化带面积变大、增大遗煤自燃危险性的问题,以顶板长钻孔替代高抽巷,配合进风巷侧注氮,通过对长钻孔参数与注氮参数的优化,进行防火与控瓦斯耦合治理的研究。以中兴煤业1401工作面实测数据结合ANSYS数值模拟,研究了长钻孔数量、位置对工作面上隅角瓦斯的影响规律,获得以5个直径300mm、距回风巷10m、距煤层底板15m的顶板长钻孔替代高抽巷的最优方案。在此基础上,为保障对采空区遗煤自燃的有效控制,研究了注氮量与注氮位置对采空区氧化带分布的影响规律,获得在进风巷侧氧化带与散热带分界位置注入5.5m3/min的氮气,将采空区氧化带宽度降至25m的优选结果。通过对上隅角瓦斯与采空区遗煤自燃的综合控制,保证了工作面的安全生产。  相似文献   

12.
为了解决工作面上隅角瓦斯超限问题,提出了超大直径钻孔治理上隅角瓦斯技术,阐述了超大直径钻孔治理上隅角瓦斯技术原理。以五阳煤矿7609工作面排水巷为试验点,通过在7609排水巷和回风巷之间施工超大直径钻孔,然后进行应用效果考察,并对数据进行分析,结果表明:单孔抽采时钻孔间距25 m或者30 m均可满足治理上隅角瓦斯的目的,在抽采负压3 kPa左右时,五阳煤矿超大直径钻孔抽采影响范围可达78 m,能对深部采空区高浓度瓦斯有持续的抽采作用,超大直径钻孔治理上隅角瓦斯技术可有效控制工作面上隅角瓦斯浓度。  相似文献   

13.
马勇 《煤矿现代化》2022,(2):111-114
本文针对马兰矿18502工作面瓦斯抽采过程中利用辅运巷、高抽巷等抽采瓦斯、钻孔原设计长度较长且穿经陷落柱等问题,依据工作面当前条件对原瓦斯抽采措施进行了改进,提出了利用大直径顶板走向孔、大直径采空区抽采钻孔以及下邻近层钻孔代替现有瓦斯抽采巷道的“以孔代巷”技术思路。实测结果表明,瓦斯抽采总量为21.25m3/min,工作面瓦斯抽采率为70.25%,工作面瓦斯浓度降低至0.13%~0.22%,上隅角瓦斯浓度降低至0.17%~0.38%,回风流内的瓦斯浓度降低至0.21%~0.31%,瓦斯浓度显著降低,从根本上解决了瓦斯超限问题。  相似文献   

14.
冉永进 《中州煤炭》2019,(7):50-52,56
为了解决低透气性煤层回采工作面采取顺层钻孔抽采后,在预计的抽采时间内未消突且在运输巷补打钻孔后抽采效果依然未达标的问题,提出了在工作面布置瓦斯治理巷,施工顺层倾斜钻孔,与原抽采钻孔形成交叉。通过在602回采工作面进行试验,发现采取瓦斯治理巷,并布置倾斜抽采钻孔技术措施后,回采工作面突出危险性预测超标率为0,割煤期间回风流瓦斯浓度由1.0%降至0.4%,实现了安全回采。证明布置瓦斯治理巷,并施工倾斜抽采钻孔的技术措施,可以有效使煤体卸压,倾斜钻孔可以有效抽采回采期间卸压瓦斯,解决回采期间回风流瓦斯超限的问题。  相似文献   

15.
为适应工作面初采期间煤层顶板压力逐渐显现、采空区瓦斯涌出不断加剧的变化特征,采用高位密集钻孔代替倾斜高抽巷,工作面通风方式为U+L形,老顶来压时14个钻孔瓦斯抽放纯量19.45m^3/min,取得较好的瓦斯治理效果,解决了倾斜高抽巷坡度大、施工困难的技术问题,为类似工作面瓦斯治理提供有益借鉴。  相似文献   

16.
为了确定工作面采空区高位钻孔施工的合理工艺参数,以81306综放工作面为研究对象,结合上覆岩层运移规律,推算出高位钻孔的终孔位置在18.04~52.21 m。以此为基础,在81306一号回风道布置4个高位钻场,共计15个高位钻孔,研究不同钻孔类型、终孔位置、钻孔长度和距巷帮距离对钻孔抽采浓度和纯瓦斯流量的影响。研究结果表明,定向长钻孔优于常规钻孔,高位钻孔距底板30 m时效果最好,20 m时次之。综合现场测试和Fluent 软件模拟结果,制定了保德煤矿高位钻孔布孔设计方案,为工作面采空区瓦斯治理提供了借鉴。  相似文献   

17.
 针对济三煤矿普遍采用的沿空掘巷准备方式受采空区积水影响的现状,利用工作面回采时实测的小剖面,计算出采空区积水量、积水面积及积水深度。制定了利用平行巷道长距离超前疏放与沿空掘进边掘边放方案,通过施工排水硐室,优化钻孔布置,施工平距100m的长距离疏放钻孔6个,共计疏3,工作面回采期间未出现大量涌水。  相似文献   

18.
根据象山矿井5#煤层煤系地层赋存条件,分析了采空区瓦斯富集区层位,设计施工5个顶板高位定向长钻孔进行采空区瓦斯抽采治理。现场抽采结果表明:顶板高位定向长钻孔布置层位高度20~22m,水平内错距离0~45m较为合理;通过进行5#煤层顶板定向长钻孔抽采技术应用,工作面日产量大幅提升,而工作面上隅角瓦斯浓度由此前长期维持在0.7%降至0.4%左右,有效遏制了上隅角瓦斯超限事故,实现了取消高位裂隙钻孔和采空区埋管抽采的目标。  相似文献   

19.
为解决特厚煤层分层开采瓦斯治理难题,通过分析白芨沟煤矿010203区段首分层0102103工作面采前瓦斯抽采效果及回采期间瓦斯涌出来源,针对性采取定向长钻孔、底板穿层钻孔、顺层钻孔卸压拦截抽采,本分层顺层钻孔强化抽采以及大孔径钻孔采空区瓦斯抽采的立体多源瓦斯综合治理方法,并提出了基于小煤柱沿空留巷的大倾角、大孔径钻孔全程下套管施工工艺,在现场得到成功应用。研究结果表明:在已有定向长钻孔、底板穿层钻孔抽采基础上,采取本分层顺层钻孔强化抽采、下伏分层顺层钻孔卸压拦截抽采等措施,解决了本分层及下伏分层卸压瓦斯涌出问题;利用大孔径钻孔以孔代巷抽采采空区瓦斯,解决了工作面隅角瓦斯积聚问题。  相似文献   

20.
针对高瓦斯厚煤层高强度开采条件下“三进两回”型通风系统回风隅角瓦斯治理的难题,通过对矿井回采工作面通风方式进行优化,使工作面形成偏“Y”型的通风方式,并与大直径水平钻孔施工工艺相结合,提出了大直径水平钻孔桥接采空区抽采瓦斯技术,应用于保德煤矿综采放顶煤回采工作面的采空区瓦斯抽采。结果表明:偏“Y”型通风方式可减少工作面巷道掘进工程量,缩短准备周期,为瓦斯抽采创造了良好的时空条件;大直径水平钻孔桥接采空区抽采瓦斯技术的应用效果明显,可连续、高效实施采空区的密闭抽采,有效控制采空区瓦斯涌出强度;大直径水平钻孔桥接采空区抽采瓦斯技术能够实现对抽采负压的有效控制,有利于进一步提高采空区瓦斯抽采效果,并且其抽采支管可回收,可降低矿井瓦斯治理的成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号