共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
碱对硅酸盐水泥水化硬化性能的影响 总被引:8,自引:0,他引:8
系统地研究了以碱含量不同、存在形式各异的熟料所制水泥的水化液相成分、水化程度、水化产物和硬化浆体微观结构,揭示了碱对硅酸盐水泥水化硬化性能影响的机理。水泥水化时,熟料中的碱迅速溶入水化液相,使液相中[OH-]升高、[Ca~(2+)]降低。由此促进水泥早期水化,并阻滞了后期水化的发展。所以,高碱水泥凝结快,1~3d硬化浆体的孔隙少、强度高;7~28d硬化浆体的孔隙多、强度低。 相似文献
4.
煅烧硬石膏对硅酸盐水泥水化过程的影响 总被引:11,自引:2,他引:11
研究了不同温度煅烧的硬石膏对硅酸盐水泥水化过程的影响。用热导式微热量仪测定了它们的水化反应速度;用XRD测定了它们的水化产物,结合SEM分析,发现经400℃以上攻的硬石膏对硅酸盐水泥的水化有明显的促进作用,并指出水化产物的迅速以致形成密实的水泥石结构是增强硅酸盐水泥的根本原因。 相似文献
5.
钢渣对硅酸盐水泥水化硬化的影响研究 总被引:2,自引:0,他引:2
研究了钢渣的掺量对硅酸盐水泥强度的影响,采用SEM和EDXA分析了水泥水化产物的形貌和微区化学成分,并用XRD对水泥水化产物的矿物组成进行了分析。结果表明,钢渣经细磨后活性有很大提高,当钢渣试样的比表面积为444.5m~2/kg时,其28d强度活性指标可达82.4%;钢渣的掺入会降低水泥的抗压强度,但随钢渣-硅酸盐水泥混合体系水化的全面进行,7d以后龄期的强度增长较快,至120d时混合水泥的净浆抗压强度已与纯硅酸盐水泥相差甚小;掺入钢渣后混合水泥水化产物的形貌与纯硅酸盐水泥的水化产物无明显差别,都有六方片状的Ca(OH)_2,CSH凝胶的形貌也与纯硅酸盐水泥的水化产物类似,所不同的是此种凝胶合有较多的含铁相;掺钢渣的混合水泥的水化产物主要有C_2SH(C)、AFt和Ca(OH)_2,但C_2SH(C)性质的确定还需要继续深入研究。 相似文献
6.
为了评价放射性废物化学组分对水泥固化的影响,利用凝结时间、水化热、XRD和水泥固化体抗压强度的表征,本文研究了不同掺量硝酸钠、亚硝酸钠、碳酸钠、碳酸氢钠和尿素对硅酸盐水泥水化的影响。结果表明:(1)低掺量硝酸钠(≤2.0%)对水泥具有一定的促凝效果,随着掺量的提高,会明显延缓体系的水化速率,同时对固化体强度产生破坏作用;高掺量硝酸钠—水泥水化体系中检测到硝酸盐类钙钒石生成;(2)碳酸钠、碳酸氢钠(0%~2%)对固化体有明显的促凝效果;(3)亚硝酸钠、尿素(0%~2%)对固化体凝结时间影响不大。研究结果将为放射性废液水泥固化配方的研发提供数据基础和理论参考。 相似文献
7.
8.
改性硅酸盐水泥的水化动力学研究 总被引:2,自引:0,他引:2
将磷铝酸盐水泥熟料掺入到硅酸盐水泥中制备改性水泥,从水化动力学的角度研究其水化情况,并与硅酸盐水泥的相应行为进行了对比.首先通过测定水化放热速率、新拌水泥浆体中的Ca2+和SiO44-离子浓度、电导率及pH值研究了改性硅酸盐水泥的水化历程,并求得了水化动力学方程.其次,测定了改性硅酸盐水泥的净浆与砂浆的强度,并用XRD等分析方法初步探讨论了改性水泥的水化机理.研究发现,改性硅酸盐水泥的水化历程与硅酸盐水泥相似,也经历初始期、诱导期、加速期、减速期和稳定期,但水化放热速率明显提高;在加速期,两者的水化反应均主要由自动催化反应控制,在减速期,均主要由扩散过程控制,但反应速率常数前者明显高于后者.无论是砂浆强度,还是净浆强度,前者也均高于后者,且凝结时间相对缩短.XRD图谱显示,前者的C3S/C2S衍射峰强度的降低率高于相应龄期的硅酸盐水泥.上述结果均意味着改性硅酸盐水泥的水化速度明显高于硅酸盐水泥;水化加速的机理为磷铝酸盐熟料水化吸收了水化浆体中OH-离子,使水化体系的OH-离子浓度减少,从而加速了C3S、C2S的水化反应. 相似文献
9.
10.
细度高低会影响硅酸盐水泥的水化特性和力学性能,从而影响混凝土的力学性能、工作性和耐久性。本文研究了组成相同、细度不同的水泥的水化特性和力学性能发展,期望对于新的水泥标准确定合适的细度范围提供依据。研究发现,以现在一般商业化生产的水泥的细度为基准,比表面积小于此范围的较粗的水泥早期水化程度低,强度低;但水化反应持续时间较长,后期强度增长率大。比表面积大于此范围的较细的水泥早期水化程度高,强度高;但水化反应持续时间较短,后期强度增长率小。水化90 d以后,不同细度的水泥的水化程度和强度基本相当。兼顾水泥的早期和后期性能,现行标准规定的水泥细度范围(比表面积在350~380 m2/kg之间)是适宜的。 相似文献
11.
以硅灰为对比,利用微量热仪研究了纳米SiO2对硅酸盐水泥24 h内水化历程、水化放热特性的影响.研究结果表明:掺入纳米SiO2的水泥试样24 h内水化历程也可划分为类似于纯硅酸盐水泥水化的5个阶段;纳米SiO2的掺入,促使诱导期、加速期和减速期的出现提前,缩短了诱导期持续的时间;提高了水化开始时的放热速率,使第二放热峰的出现提前,增大了水化放热量. 相似文献
12.
13.
14.
Thermodynamic modelling of the hydration of Portland cement 总被引:1,自引:0,他引:1
A thermodynamic model is developed and applied to calculate the composition of the pore solution and the hydrate assemblage during the hydration of an OPC. The calculated hydration rates of the individual clinker phases are used as time dependent input. The modelled data compare well with the measured composition of pore solutions gained from OPC as well as with TGA and semi-quantitative XRD data. The thermodynamic calculations indicate that in the presence of small amounts of calcite typically included in OPC cements, C-S-H, portlandite, ettringite and calcium monocarbonates are the main hydration products. The thermodynamic model presented in this paper helps to understand the interactions between the different components and the environment and to predict the influence of changes in cement composition on the hydrate assemblage. 相似文献
15.
Monitoring Portland cement hydration: Comparison of methods 总被引:1,自引:0,他引:1
Leslie J. Parrott Mette Geiker Walter A. Gutteridge David Killoh 《Cement and Concrete Research》1990,20(6):919-926
Various experimental methods of monitoring Portland cement hydration are compared. The methods are quantitative X-ray diffraction analysis (QXRD), measurement of non-evaporable water as loss on ignition and by thermogravimetry, conduction calorimetry and measurement of chemical shrinkage. Correlations between these different measures of hydration are obtained using samples of paste for three different Portland cements. The correlation between non-evaporable water and QXRD data was dependent on the chemical composition of the cement and shows that less water was chemically bound at early ages, for a given amount of cement reacted. A near-linear relationship was found between chemical shrinkage and QXRD data. The correlation between heat of hydration and QXRD data was approximately linear and not greatly affected by cement type. 相似文献
16.
Most concrete produced today includes either chemical additions to the cement, chemical admixtures in the concrete, or both. These chemicals alter a number of properties of cementitious systems, including hydration behavior, and it has been long understood by practitioners that these systems can differ widely in response to such chemicals.In this paper the impact on hydration of several classes of chemicals is reviewed with an emphasis on the current understanding of interactions with cement chemistry. These include setting retarders, accelerators, and water reducing dispersants. The ability of the chemicals to alter the aluminate–sulfate balance of cementitious systems is discussed with a focus on the impact on silicate hydration. As a key example of this complex interaction, unusual behavior sometimes observed in systems containing high calcium fly ash is highlighted. 相似文献
17.
Göril Möschner Barbara Lothenbach Ruben Kretzschmar 《Cement and Concrete Research》2009,39(4):275-282
Citric acid can be used to retard the hydration of cement. Experiments were carried out to investigate the influence of citric acid on the composition of solid and liquid phases during cement hydration. Analyses of the solid phases showed that dissolution of alite and aluminate slowed down while analyses of the pore solution showed that citric acid was removed almost completely from the pore solution within the first hours of hydration. The complexation of the ions by citrate was weak, which could also be confirmed by thermodynamic calculations. Only 2% of the dissolved Ca and 0.001% of the dissolved K formed complexes with citrate during the first hours. Thus, citric acid retards cement hydration not by complex formation, but by slowing down the dissolution of the clinker grains. Thermodynamic calculations did not indicate precipitation of a crystalline citrate species. Thus, it is suggested that citrate sorbed onto the clinker surface and formed a protective layer around the clinker grains retarding their dissolution. 相似文献
18.
Results of calorimeter tests on Portland cement-silica fume-fly ash mixtures are presented. Data indicate that silica fume accelerates cement hydration at high water/cementitious ratios and retards hydration at low water/cementitious ratios. On the other hand, fly ash retards cement hydration more significantly at high water/cementitious ratios. When silica fume and fly ash are added together with cement, the reactivity of the silica fume is hampered and the hydration of the cementitious system is significantly retarded. 相似文献
19.
The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C.The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling.The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. 相似文献