首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
官典  李世鹏  刘筑  王宁飞 《兵工学报》2021,42(9):1877-1887
大过载下固体火箭燃烧与流动状态的剧烈变化会导致内弹道出现异常,严重时可能会引起发动机点火失败。为研究横向过载时点火内弹道特性,建立囊括流场惯性过载效应、过载燃烧效应和侵蚀燃烧效应的点火模型。对不同横向过载下燃烧室压力和侵蚀与过载效应燃速增速占比进行计算,并给出了推进剂火焰传播速度与升压速率的关系。结果表明:正向过载下压力峰值增加,负向过载下压力峰值降低;正向过载下,推进剂前段主要由过载效应影响,后段主要由侵蚀效应影响;正向过载加剧下游侵蚀效应,而负向过载对推进剂的燃烧起削弱作用,但程度较弱、持续时间较短;火焰传播速度峰值时刻、推进剂表面首次全部点燃时刻和升压速率峰值点时刻几乎一致,工程上可以用实验中获得的升压速率分析推进剂表面燃烧状况。  相似文献   

2.
硼在固体推进剂中的应用展望   总被引:1,自引:0,他引:1  
对硼颗粒的点火和燃烧特性研究进行了简要的叙述, 结合硼颗粒点火和燃烧研究进展及其应用情况, 认为以下四方面将会促进硼在固体推进剂中的应用, 即固体火箭发动机整体级方案选用洁净固体推进剂技术、高性能火箭发动机技术、新材料合成技术的发展促进硼在固体推进剂中的应用以及硼在调节固体推进剂燃烧特性中所起的作用.  相似文献   

3.
固体火箭推进剂低温下点火瞬间高速加载的耦合作用可能会导致推进剂结构发生破坏,针对此问题,利用推进剂中止熄火的原理,设计了一种中止压力可控模拟点火冲击试验装置,以点火药燃烧产生的燃气对推进剂进行模拟点火冲击。点火压力根据药室容积和点火药量之间的计算公式确定,中止压力通过爆破片破片压力控制。通过对点火冲击过程的压力与时间和升压速率与时间关系曲线分析,得知点火压力和点火方式对点火药燃气的升压速率影响较大。多次重复试验表明:该加载方法中止压力可控,压力偏差<±5%;弱点火时升压速率为2 000 MPa/s,强点火时升压速率达到5 000 MPa/s, 高于通常发动机点火的升压速率;可作为固体火箭推进剂模拟低温点火冲击的研究手段。  相似文献   

4.
星形装药发动机点火过程数值分析   总被引:2,自引:0,他引:2  
星形是固体火箭发动机常用的装药形式,而其点火瞬时过程对发动机能否正常工作起着极为重要的作用.文中以Fluent软件为计算平台,采用UDF编译来实现点火燃气和推进剂燃气的质量、动量、能量向燃烧室的注入,结合kε两方程湍流模型、Pl辐射模型对某有堵盖的星形装药固体火箭发动机的点火瞬态过程进行三维数值计算.计算结果预示了各时刻下星形装药发动机燃烧室内的流场状态变化、火焰在星角内和轴向的传播规律.  相似文献   

5.
固冲发动机补燃室内硼颗粒点火和燃烧数值研究   总被引:5,自引:0,他引:5  
采用颗粒轨道模型进行了含硼贫氧推进剂固体火箭冲压发动机补燃室两相流的数值模拟,其中硼颗粒的点火和燃烧模型采用的是King模型,建立了发动机补燃室内简单反应流模型,并在该模型下对某实验发动机进行了模拟,得出颗粒在补燃室内的分布,结果表明:进入头部回流区的硼颗粒能够快速点火,并且颗粒直径增大后,点火时间增加,颗粒燃烧效率显著降低.  相似文献   

6.
肖波  刘佩进 《含能材料》2011,19(1):55-59
模拟固体火箭发动机内的点火瞬态,必须了解其推进剂固相表面的火焰传播过程及给定初始气/凝相上的火焰传播速度.通过在推进剂表面嵌入热电偶丝的类靶线法及光电探测法,对后向台阶型装药的高能推进剂开展了两次火焰传播实验.结果表明,上游推进剂表面是由火焰连续传播所点燃,下游表面是由上游推进剂燃烧产生的燃气所点燃,台阶底部区域则是最...  相似文献   

7.
为了研究固体火箭发动机燃烧室内凝相颗粒的分布规律,改进了一种固体推进剂凝相燃烧产物收集装置,针对典型的HTPB复合推进剂,开展了不同聚集状态下凝相颗粒的收集实验。研究结果表明,凝相燃烧产物在0.27~100μm之间都有颗粒存在,凝相颗粒主要集中在0.27~10μm之间,粒径大于20μm的颗粒较少;工作压强对颗粒粒径分布有较大影响,随着工作压强的升高,凝相颗粒粒径变小,粒度分布更为集中;工作压强相同的条件下,随着聚集角度的增加,凝相颗粒粒径变大。  相似文献   

8.
对固体火箭发动机推进剂的比冲、燃烧效率等性能来说,现代社会已经提出了更高的要求。开展含铝推进剂燃烧机理研究,建立含铝推进剂燃烧模型具有重大现实意义,基于Al/O2、Al/CO2、Al/H2O和Al/AP/HTPB/RDX推进剂的反应机理的详细反应机理,重点研究了密闭环境下反应过程中参与反应的物质组分变化,初步得到了Al/AP/HTPB/RDX推进剂燃烧模型,发现环境压力的提高有助于反应的进行,能提高反应进行的速率,并能提高反应达到平衡时的环境温度;发现环境初始温度的升高显著缩短了反应的延迟时间,但不利于放热总包反应的进行。  相似文献   

9.
陈军 《弹道学报》2020,32(1):55-63
为了解决固体火箭推进剂高温高压燃气输运系数难以实验测量和理论预估的实际问题,考虑燃气中含有H2O、HCl、SO2等强极性组分和H2等轻质组分,通过大量文献实例验证,归纳了适于这些组分及其混合物在高温高压条件下的黏性系数和导热系数计算方法,计算了双基推进剂(DB)、改性双基推进剂(CMDB)和复合推进剂(CP)3种主要固体推进剂燃气在不同温度(1 500~3 800 K)和压强(8~20 MPa)下的黏性系数、导热系数和普朗特数,得到了固体火箭发动机燃气黏性系数和导热系数随温度变化的幂指数函数规律和典型普朗特数取值。所得结果对于促进高温高压气体混合物输运性质的深入研究、火箭发动机燃烧及其内外流动仿真,均具有重要的实际应用意义。该方法没有考虑凝聚相对输运性质的影响。  相似文献   

10.
叶小兵  陈雄  单新有  周长省  秦振杨 《含能材料》2017,25(12):1025-1030
为研究膏体推进剂火箭发动机点火工作特性,推导了膏体推进剂燃面变化模型和各阶段燃面方程,编制了发动机点火特性参数计算程序,计算了不同输运管道孔径以及膏体推进剂初始堆积量下瞬态燃烧室压力。设计了膏体推进剂火箭发动机热试车试验系统,成功进行了点火试验,分析了膏体推进剂火箭发动机点火工作过程中四个阶段的特性。结果表明:燃烧室平均压强的计算结果与试验数据吻合较好,计算误差小于5.7%,该计算程序适用于膏体推进剂火箭发动机点火特性参数计算;膏体推进剂初始堆积量增加一倍,初始压力峰值平均增加42.8%;输运管道孔径减小60%,初始燃烧时间平均减小66.5%,余药燃烧时间平均下降26.1%。发动机点火试验时,减小膏体推进剂初始堆积量,可降低燃烧室初始压力峰、增大稳定燃烧时间,另外减小输运管道孔径,可明显增大发动机稳定燃烧时间。  相似文献   

11.
不同火焰环境下固体火箭发动机烤燃特性数值模拟   总被引:2,自引:0,他引:2  
杨后文  余永刚  叶锐 《兵工学报》2015,36(9):1640-1646
为了研究固体火箭发动机意外遇到火焰环境时的热安全性问题,以高氯酸铵/端羟基聚丁二烯(AP/HTPB)复合固体推进剂为装填对象,针对某种小型固体火箭发动机建立了二维烤燃简化模型。分别对800 K、1 000 K、 1 200 K火焰环境下固体火箭发动机的烤燃特性进行了数值模拟。计算结果表明,3种火焰环境下,AP/HTPB最初着火位置均发生在靠近喷管的药柱外壁一环形区域内;随着火焰温度的提高,着火延迟期快速缩短,着火温度逐渐增大;绝热层的绝热作用随着火焰温度的增大而增强;复合固体推进剂中AP首先发生缓慢分解时的温度随火焰温度的提高而增大。  相似文献   

12.
负压环境下铝镁贫氧推进剂激光点火及燃烧特性   总被引:1,自引:0,他引:1  
赖华锦  陈雄  周长省  相恒升 《含能材料》2017,25(10):817-821
为研究不同负压对铝镁贫氧推进剂的点火及燃烧特性的影响,在负压环境下(0.01,0.02,0.04,0.06,0.08,0.1 MPa)和不同热流下(1.26,1.86,2.23,2.79 W·mm~(-2))采用CO_2激光点火系统对铝镁贫氧推进剂进行点火实验,使用高速摄影仪记录点火燃烧过程,使用两个光电二极管同时监测激光和火焰信号得到其点火延迟时间,研究了负压对推进剂点火延迟时间、燃烧过程和燃速的影响。结果表明,压强影响推进剂热解气体的扩散,压强为0.08 MPa时,初焰为圆柱状,随着压强降低至0.02 MPa,初焰为圆球状;随着压强的降低,推进剂点火延迟时间增加,但随着热流密度的增大,压强对点火延迟时间的影响显著降低;压强对推进剂燃速影响较大,随着压强的降低,推进剂燃速降低,当压强从0.1 MPa降至0.01 MPa时,燃速降低47%;同时,在负压环境下,Vielle燃速公式更适用于表征铝镁贫氧推进剂的燃速特性。  相似文献   

13.
陈军 《弹道学报》2022,34(4):52-60
为了解决固体火箭推进剂高温高压燃气输运系数难以实验测量和理论预估的实际问题,考虑燃气中含有H2O、HCl、SO2等强极性组分和H2等轻质组分,通过大量文献实例验证,归纳了适于上述组分及其混合物在高温高压条件下的扩散系数计算方法,并计算了典型双基推进剂、复合改性双基推进剂和复合推进剂三种主要固体推进剂燃气在不同温度(1 500~3 800 K)和压强(8~20 MPa)下的扩散系数和输运准则数(施密特数和路易斯数),得到了固体火箭发动机燃气扩散系数随温度和压强变化的幂指数函数规律(典型双基推进剂燃气的扩散系数随温度变化的幂指数为1.646 55、典型复合改性双基推进剂和典型复合推进剂为1.629 52),以及路易斯数、施密特数的典型取值(典型双基推进剂燃气的施密特数为0.772、路易斯数为0.91,典型复合改性双基推进剂燃气的施密特数为0.675、路易斯数为0.9,典型复合推进剂燃气的施密特数为0.74、路易斯数为0.83)。这对于促进高温高压气体混合物输运性质的深入研究、火箭发动机燃烧及其内外流动仿真,均具有重要的实际应用意义。该方法没有考虑凝聚相对输运性质的影响。  相似文献   

14.
叶青  余永刚 《兵工学报》2020,41(10):1970-1978
为研究星型装药的固体火箭发动机的热安全性问题,针对装填高氯酸铵/端羟基聚丁二烯(AP/HTPB)推进剂的火箭发动机开展烤燃数值研究。采用两步总包反应描述AP/HTPB的烤燃过程,建立三维烤燃模型对快速、中速和慢速加热速率下火箭发动机的烤燃行为进行数值预测。结果表明:升温速率对着火温度和着火延迟期有一定影响,对着火区域的中心位置、形状和大小有较大影响:在升温速率0.55~1.45 K/s快速烤燃工况下,着火位置紧邻推进剂右侧端面;在升温速率0.005~0.011 K/s中速烤燃工况下,着火区域均呈不连续点状圆环分布,着火点位于翼槽中线上;在升温速率2.4~3.3 K/h慢速烤燃工况下,着火点以翼槽中线呈对称两点分布;随着升温速率升高,着火位置向推进剂右侧端面移动;着火温度Ti与升温速率k呈二次函数关系,即Ti= 516.659 36- 1.267 8k+7.479 4k2.  相似文献   

15.
点火药盒开孔大小对点火燃气内流场特性影响   总被引:1,自引:0,他引:1  
周柏航  王浩  齐治 《弹道学报》2021,33(2):78-84
为了保证阶梯多根的装药设计形式的火箭发动机点火过程的安全性与稳定性,研究了不同开孔大小点火药盒的火箭发动机点火过程的流场特性.采用FLUENT计算软件对不同开孔大小点火药盒的火箭发动机点火过程的内流场进行了三维数值仿真,分析了点火药盒开孔大小对点火过程流场特性的影响.不同开孔大小点火药盒的输出压强都大约在4 ms时达到...  相似文献   

16.
以某火炮密实装药为背景,为了研究在中心点传火结构下装药床中点火火焰的传播特性,设计并使用了可视化半密闭爆发器式模拟实验装置。考虑到实验安全性,装置中以尼龙假药粒床来替代真实发射药,通过高速摄影系统拍摄了装药床中点火火焰的传播过程。实验结果表明,点火火焰在前期主要体现为径向传播,直至火焰气体受到药室壁面的约束,径向传播减弱而轴向扩展成为主要特征。基于实验,结合多孔介质模型建立了装药床中点火燃气流的二维轴对称传播模型,并利用FLUENT软件对点火火焰的流动过程进行了数值模拟。将气体高温面等效为火焰面,数值计算得到的气相温度场云图与实验拍摄的火焰图像对比基本吻合,火焰轴向位移的数值结果与实验结果相差不超过7.14%,并由数值计算的火焰位移曲线得出装药床中火焰轴向传播的平均速度为14.1 m/s。  相似文献   

17.
为了获得固体火箭发动机的推进剂内孔形状对烤燃特性的影响,针对装填高氯酸铵/端羟基聚丁二烯(AP/HTPB)的圆形孔、星孔装药的固体火箭发动机,在基于Arrhenius定律的基础上,分别建立了对应的固体火箭发动机二维、三维非稳态烤燃模型。对上述两种装药结构的固体火箭发动机烤燃过程进行了数值模拟,分析了以上两种内孔形状对推进剂烤燃特性的影响。结果表明:固体推进剂的内孔形状在不同热载荷条件下的烤燃响应特性不同。快速烤燃条件下,内孔形状对固体火箭发动机的烤燃响应特征参数影响较小;在慢速烤燃条件下,推进剂内孔形状对推进剂着火延迟时间影响有限,对着火温度和着火位置则有显著影响。采用圆形孔装药时发生烤燃响应的着火温度较高,而采用星形孔装药时则较低;圆形孔装药时着火位置在推进剂头部内孔壁面附近,且随升温速率增大着火位置逐渐向端面移动,而星形孔装药时着火位置则位于推进剂中部的内孔壁面附近,且随升温速率的增大着火位置会出现跳跃性变化。  相似文献   

18.
张小兵  袁亚雄 《兵工学报》1996,17(2):168-172
用离子探针和压电传感器在高压燃烧器中对5/7,6/7,7/7火药床的对流燃烧过程进行了实验研究,成功地获得了火焰阵面曲线和火焰传播速度以及压力波传播和反射等现象,揭示了粒状火药床对流燃烧过程的燃烧机理,并研究点火强度,装填密度,火药尺寸等因素对燃烧过程的影响。实验结果对火箭推进系统和火炮膛内产生灾难性异常压力机理研究有实际意义。  相似文献   

19.
在0.1MPa到1MPa的低压范围内,实验研究了一系列特定的HTPB/AP富燃复合固体推进剂的燃烧特性。研究表明:高压、高AP浓度和较小的AP粒子尺寸能促进稳定燃烧,提高燃速和燃烧效率,降低点火温度。加入亚铬酸铜(CC)作为增速剂能提高整个压力范围内的燃速,加入6%CC可降低推进剂点火温度16%,燃烧效率可达96%,而没有添加CC的推进剂配方燃烧效率为31%~73%。研究表明,在极低的压力下Vieille燃速公式对此系列推进剂仍然适用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号