首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximately 50 episodes of Saharan dust intrusion have been observed by PIXE in the atmosphere of Debrecen, Hungary since 1991 [I. Borbély-Kiss, Á.Z. Kiss, E Koltay, Gy. Szabó, L. Bozó, J. Aerosol Sci. 35 (2004) 1205]. In order to separate dust particles of Saharan origin from local sources, and to follow the formation, ageing and evolution of particles originating from long range transport processes, individual dust particle analysis was carried out on the Debrecen ion microprobe.The samples were collected on polycarbonate filters at a rural site 50 km from Debrecen during the Saharan sand plume in November 1996.Quantitative elemental concentrations for elements Z ? 6 were determined using PIXE–PIXE and STIM analytical methods. Saharan dust particles were selected on the base of characteristic elemental ratios like Ti/Ca, Ti/Fe and Al/Ca. Major and trace element content and possible chemical composition of the selected particles were determined.Single particle analysis of Saharan dust particles will lead to a better understanding of their formation process during transport.  相似文献   

2.
Er-doped dielectric films are characterized by the emission of a photoluminescence signal at λ = 1.54 μm, the main used in the optical telecommunications. The efficiency of the radiative emission is strongly related to the characteristics of the Er3+ environment. Er-doped SiO2 films (synthesized by rf-magnetron co-sputtering) and 87SiO2:10Al2O3:3Na2O silicate glass films doped with 0.5 mol% of Er (prepared by sol–gel route and subsequently doped with silver by Ag+ ? Na+ field-assisted solid-state ion exchange) were studied by extended X-ray absorption fine structure spectroscopy performed at Er LIII-edge (Italian beamline GILDA of the ESRF). In the silica samples the Er coordinates about 4.5 O atoms at a short distance (R = 2.07–2.13 Å), similar to the one observed in Er-doped glasses when the preparation conditions are far from the thermodynamical equilibrium. In alumino-silicate samples the first shell of atoms is formed of 5.5–7.5 O atoms at a distance of about 2.31 Å, showing a local structure similar to other Er-doped sol–gel glasses and glass–ceramics. A comparison between the first shell structure around Er ions and the different intensity of the photoluminescence emission suggests that the increase of the radiative emission upon thermal annealing is mainly related to the decrease of the defects number in the glass structure as a consequence of the annealing.  相似文献   

3.
Cosmogenic 10Be is produced in the atmosphere, and deposits onto the surface of the earth mainly through wet precipitation and dust. Based on the analysis of 10Be in Chinese loess, we believe that 10Be in loess is composed of two components: locally precipitated atmospheric 10Be, and windblown 10Be adsorbed on the surface of silt grains. On the Loess Plateau, 10Be concentrations in loess and paleosol range from (1.4 to 2.8) × 108 atoms/g and (2.7 to 4.5) × 108 atoms/g, respectively. To investigate the sources of 10Be in loess, we measured 10Be in sand grains from deserts in western China and falling dust from the deposition regions. The results show that the 10Be concentrations in sand and dust are (1.1–5.1) × 107 atoms/g and (1.3–2.8) × 108 atoms/g, respectively. Loess and paleosol on the Loess Plateau both contain inherited 10Be adsorbed on silt grains from dust; most of the windblown deposited loess materials do not directly come from the Gobi and other sand deserts, but mainly from the loess–desert transitional zones, which are characterized by silt and dust holding areas.  相似文献   

4.
We report the low temperature (below the metal–insulator transition temperature Tim) resistivity and magnetoresistance (MR) behavior of 50 MeV Li3+ beam irradiated La0.7Pb0.3MnO3 for three different fluences. Ion beam irradiation causes a decrease of Tim leading to the increase of insulating regime. Resistivity data of the unirradiated as well as irradiated samples fitted well with an equation of the form ρ = ρ0 + ρ2.5T2.5 which indicates predominant contribution from the electron–magnon interaction (second term). The temperature dependent MR data of samples irradiated with different ion fluences follow the simple relation [MR = a + b/(T + C)] showing appreciable effect of radiation on the parameters a, b and C. The physical significance of the radiation effect on these parameters is not yet very clear.  相似文献   

5.
Up to the present, photoluminescence (PL) was obtained from near stoichiometric or amorphous Si nitride films (SiNx) after annealing at high temperatures. As a consequence, the existence of PL bands has been reported in the 400–900 nm range. In the present contribution, we report the first PL results obtained by Si implantation into a stoichiometric 380 nm Si3N4 film. The Si excess is obtained by a 170 keV Si implantation at different temperatures with a fluence of Φ = 1017 Si/cm2. Further, we have annealed the samples in a temperature range between 350 and 900 °C in order to form the Si precipitates. PL measurements were done using an Ar laser as an excitation source, and a broad PL band basically centered at 910 nm was obtained. We show that the best annealing condition is obtained at Ta = 475 °C for the samples implanted at 200 °C, with a PL yield 20% higher than the obtained at room temperature implantation. Finally, we have varied the implantation fluence and, consequently, the Si nanocrystals size. However, no variation was observed nor in the position neither in the intensity of the PL band. We concluded that the PL emission is due to radiative states at the matrix and the Si nanocrystals interface, as previously suggested in the literature.  相似文献   

6.
Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm?2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.  相似文献   

7.
A novel dust-free route for the preparation of (U, Am)O2?x targets has been demonstrated using a combined sol–gel and single- or double Am-infiltration process at the Minor Actinide Laboratory (MALAB) of the Institute for Transuranium Elements (ITU). Samples with 10 and 20 mol% of Am were prepared. For both Am concentrations, a single cubic phase material with a fluorite structure was observed by X-ray diffraction. X-ray absorption spectroscopy was carried out to characterize the chemical state of the metal atoms and their local crystallographic environment. The U(IV) and Am(III) valence states are predominant and the O/Am ratio is ~1.6 for both Am contents. For the 20 mol% Am, EXAFS reveals an expansion of the Am–O (2.43 Å) bond length beyond the metal–oxygen bond length in both AmO2 (2.31 Å) and UO2 (2.35 Å).  相似文献   

8.
Structure changes and light emission behavior in Er+ implanted SnO2:SiO2 layers are studied, using transmission electron microscopy (TEM), Rutherford backscattering (RBS) and cathodoluminescence (CL). SnO2:SiO2 layers of different composition deposited with RF magnetron sputtering on Si wafers were implanted with 200 keV Er+ to a fluence of 3 × 1015 cm?2 at room temperature. The implanted structures were then annealed at 600–1000 °C for 30 min, resulting in the formation of crystalline SnO2 nanoclusters. Cross-section TEM revealed a strong reduction of the SnO2 crystallite size down to several nanometers in the implanted area of the SnO2:SiO2 layer as compared to the undoped layer. In addition, a very narrow layer of SnO2 nanocrystals appears at the SiO2/Si interface. Several narrow CL emission peaks and wide bands were found which could be related to the decay of SnO2 free excitons, to oxygen deficiency centers in SiO2 and to transitions between the energy levels in the Er ions, apparently located at nanoclusters. The mechanisms of nanostructuring as well as the emission process are discussed.  相似文献   

9.
In order to investigate the oxidation behavior of LWR cladding materials under the condition of reactor accidents, e.g. LOCA, Zr–Nb alloys with 1–10 wt%Nb and Zircaloy-4 (0 wt%Nb) were oxidized at 973–1273 K in dry air. The weight gain due to oxidation increased with Nb content at 973 and 1073 K was the smallest for 2.5 wt%Nb at 1173 and 1273 K. The oxidation kinetics obeyed the parabolic rate law without a few cases, e.g. 6–10 wt%Nb and 1273 K. The parabolic rate constant at high temperatures had the somewhat low activation energy compared to that at low temperatures. These results implied that such oxidation behaviors of Zr–Nb alloys related to the lattice structures of oxide films as well as underlying metal during oxidation. Especially at high temperatures, 6ZrO2–Nb2O5 compound might promote the oxidation of Zr–Nb alloys with high content of Nb.  相似文献   

10.
The defects produced in 4H–SiC epitaxial layers by irradiation with a 200 keV H+ ion beam in the fluence range 6.5 × 1011–1.8 × 1013 ions/cm2 are investigated by Low Temperature Photoluminescence (LTPL–40 K).The defects produced by ion beam irradiation induce the formation of some sharp lines called “alphabet lines” in the photoluminescence spectra in the 425–443 nm range, due to the recombination of excitons at structural defects.From the LTPL lines intensity trend, as function of proton fluence, it is possible to single out two groups of peaks: the P1 lines (e, f, g) and the P2 lines (a, b, c, d) that exhibit different trends with the ion fluence. The P1 group normalized yield increases with ion fluence, reaches a maximum at 2.5 × 1012 ions/cm2 and then decreases. The P2 group normalized yield, instead, exhibits a formation threshold at low fluence, then increases until a maximum value at a fluence of 3.5 × 1012 ions/cm2 and decreases at higher fluence, reaching a value of 50% of the maximum yield.The behaviour of P1 and P2 lines, with ion fluence, indicates a production of point defects at low fluence, followed by a subsequent local rearrangement creating complex defects at high fluence.  相似文献   

11.
The effective atomic numbers (Zeff) and effective electron density (Ne) for three different steels have been determined via the mass attenuation coefficients (μ/ρ). The mass attenuation coefficients have been calculated at the photon energy range of 1 keV–1 GeV and measured at the photon energies of 662, 1173 and 1332 keV. The measurement has been performed using a gamma spectrometer that contains a NaI(Tl) detector connected to Multi-Channel-Analyzer (MCA). The measured results of effective atomic numbers (Zeff) and effective electron density (Ne) were found to be in good agreement with the calculations.  相似文献   

12.
In this study the boron lattice site location in ternary BxGa1?xAs and BxGa1?xP thin films grown on (0 0 1) GaAs and (0 0 1) GaP, respectively, using low pressure metal-organic vapour-phase epitaxy (MOVPE) with boron concentrations between x = 0.8% and x = 3.2% was investigated with RBS and the 10B(α,p)13C nuclear reaction using a 2.3 MeV He+ ion beam. For this purpose, the ion beam was aligned with the [0 0 1], [0 1 1] and [1 1 1] axis and the RBS and proton yield from the nuclear reaction compared with random ion incidence. For comparison, theoretical proton yields which assume boron to be located on substitutional lattice sites only were calculated for each sample/axis combination and compared with the experimental yields. The RBS/channeling measurements show a very good crystal quality of the films with χmin being in the range of 3–5% for the [0 1 1] axis. The best crystal qualities, i.e. the lowest χmin values and dechanneling rates, are achieved for low boron concentrations. From NRA/channeling it can be deduced that in the BxGa1?xAs films the fraction of interstitial boron is approximately 5% for low boron concentrations of x = 1% and 6–10% for concentrations up to x = 3.2%, whereas the fraction of interstitial boron is less than 3% in the BxGa1?xP film studied despite a concentration of x = 2.0%. This indicates that antisite effects of the boron incorporation are more likely in GaAs compared to GaP.  相似文献   

13.
Y(BD4)3, which stores as much as 16.6 wt.% and 252 kg/m3 D, has been synthesized via high-energy disk milling. The thermal decomposition of Y(BD4)3 has been investigated using thermogravimetric and calorimetric analyses combined with the spectroscopic evolved gas analysis. Two major endothermic events corresponding to thermal decomposition could be distinguished in the DSC profile up to 400 °C at ca. 231 and 285 °C, preceded by a phase transition (at ca. 198 °C) from the low-temperature Pa-3 form to a high-temperature polymorph of Y(BD4)3 (F-43c). The high-temperature phase forming at the onset of thermal decomposition may be prepared quantitatively by heating of the low-temperature phase to ca. 216 °C followed by rapid quenching.Effects of isotope H→D substitution on various properties of yttrium borohydride have been analyzed. Y(BD4)3 constitutes a very efficient low-temperature source of deuterium gas on the laboratory scale.  相似文献   

14.
《Nuclear Engineering and Design》2005,235(17-19):1799-1805
Small punch (SP) tests were performed to evaluate the ductile–brittle transition temperature before and after a neutron irradiation of reactor pressure vessel (RPV) steels produced by different manufacturing (refining) processes. The results were compared to the standard transition temperature shifts from the conventional Charpy tests and the Master Curve fracture toughness tests in accordance with the American Society for Testing and Materials (ASTM) standard E1921. Small punch specimens were taken from a 1/4t location of the vessel thickness and machined into a 10 mm × 10 mm × 0.5 mm dimension. The specimens were irradiated in the research reactors at Korea Atomic Energy Research Institute Nuclear Research Institute in the Czech Republic at the different fluence levels of about 290 °C. Small punch tests were performed in the temperature range of RT to −196 °C using a 2.4 mm diameter ball. For the materials before and after irradiation, the small punch transition temperatures (TSP), which are determined at the middle of the upper small punch energies, showed a linear correlation with the Charpy index temperature, T41 J. TSP from the irradiated samples was increased with the fluence levels and was well within the deviation range of the unirradiated data. However, the transition temperature shift from the Charpy test (ΔT41 J) shows a better correlation with the transition temperature shift (ΔTSP(E)) when a specific small punch energy level rather than the middle energy level of the small punch curve is used to determine the transition temperature. TSP also had a correlation with the reference temperature (T0) from the Master Curve method using a pre-cracked Charpy V-notched (PCVN) specimen.  相似文献   

15.
We examined the relation between the 3.1 eV emission band and local structure for Ge+ implanted silica glass by means of photoluminescence, optical and X-ray absorption spectroscopies. In the 2 × 1015 cm?2 implanted sample, a new emission band around 2.7 eV was observed, the origin of which was assigned to the B oxygen deficient center and/or small Si clusters in silica. When the Ge+ fluence exceeded 2 × 1016 cm?2, a sharp and intense 3.1 eV emission band replaced the 2.7 eV band. We found that the intense 3.1 eV PL occurred by the prolonged X-ray irradiation onto the 2 × 1015 cm?2 implanted sample. UV–vis absorption and XAFS spectroscopies suggested that the aggregation of atomically dispersed tetravalent (Ge(IV)) atoms into Ge(0) clusters of ~1 nm exhibit strongly correlation with the generation of the 3.1 eV PL. Such nano- and/or subnano-size Ge(0) clusters formed by the X-ray radiation were oxidized and decomposed again to the isolated Ge(IV) atoms, while those produced by the higher Ge+ fluence were stable against the exposure to air.  相似文献   

16.
A study of the effects of ion irradiation of organically modified silicate thin films on the loss of hydrogen and increase in hardness is presented. NaOH catalyzed SiNawOxCyHz thin films were synthesized by sol–gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H+ or 250 keV N2+ at fluences ranging from 1 × 1014 to 2.5 × 1016 ions/cm2. Elastic Recoil Detection (ERD) was used to investigate resulting hydrogen concentration as a function of ion fluence and irradiating species. Nanoindentation was used to measure the hardness of the irradiated films. FT-IR spectroscopy was also used to examine resulting changes in chemical bonding. The resulting hydrogen loss and increase in hardness are compared to similarly processed acid catalyzed silicate thin films.  相似文献   

17.
18.
In this paper we developed a method of analysis by which the average stress–plastic strain flow curve of mechanically anisotropic materials can be deduced from spherical indentation test data. Our analysis is based upon spherical indentation tests performed on the extruded and cold-drawn Zr–2.5%Nb CANDU pressure tube material over the range of temperature from 25 °C to 300 °C. The indentation force and depth data were analyzed and σavg and ?avg were calculated using previously reported equations developed for spherical indentation of isotropic material which were then modified, by incorporating the appropriate Hill’s anisotropy coefficients, to characterize the anisotropic yield stress of the indented material. The resulting flow curves were dependent on indentation direction and correspond closely with flow curves obtained from previously reported conventional uniaxial stress tests performed on the Zr–2.5%Nb material. Indentation tests performed with large, 200 μm, and small, 40 μm, diameter spheres indicate that for small diameter indentations, when the indentation depth is less than several micrometers, the calculated σavg is heavily influenced by the depth dependence of the yield strength of the indented material.  相似文献   

19.
The thermal neutron cross section and the resonance integral of the reaction 165Ho(n, γ)166gHo were measured by the activation method using 55Mn(n,γ)56Mn monitor reaction. The sufficiently diluted MnO2 and Ho2O3 samples with and without a cylindrical Cd case were irradiated in an isotropic neutron field of the 241Am–Be neutron sources. The γ-ray spectra from the irradiated samples were measured with a calibrated n-type high purity Ge detector. Thus, the thermal neutron cross section for 165Ho(n,γ)166gHo reaction has been determined to be 59.2 ± 2.5 b relative to the reference thermal neutron cross section value of 13.3 ± 0.1 b for the 55Mn(n,γ)56Mn reaction, and it generally agrees with the recent measurements within about 1 to 12%. The resonance integral has also been measured relative to the reference value of 14.0 ± 0.3 b for the 55Mn(n,γ)56Mn reaction using an epithermal neutron spectrum of the 241Am–Be neutron source. The resonance integral for 165Ho(n, γ)166gHo reaction obtained was 667 ± 46 b at a cut-off energy of 0.55 eV for 1 mm Cd thickness. The existing experimental and evaluated data for the resonance integral are distributed from 618 to 752 b. The present resonance integral value agrees with most of the previously reported values obtained by 197Au standard monitor within the limits of error.  相似文献   

20.
In the present work, new, differential cross-section values are presented for the natK(p, p0) reaction in the energy range Elab = 3000–5000 keV (with an energy step of 25 keV) and for detector angles between 140° and 170° (with an angular step of 10°). A qualitative discussion of the observed cross-section variations through the influence of strong, closely spaced resonances in the p + 39K system is also presented. Information has also been extracted concerning the 39K(p,α0) reaction for Elab = 4000–5000 keV in the same angular range. As a result, more than ~500 data points will soon be available to the scientific community through IBANDL (Ion Beam Analysis Nuclear Data Library – http://www-nds.iaea.org/ibandl/) and could thus be incorporated in widely used IBA algorithms (e.g. SIMNRA, WINDF, etc.) for potassium depth profiling at relatively high proton beam energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号