共查询到20条相似文献,搜索用时 78 毫秒
1.
带钢表面缺陷形成机理复杂、发生频次高,对成品质量的影响大,是最重要、最难控制的质量指标之一。针对当前卷积神经网络模型存在系统消耗大、处理时间长、无有效特征输出,以及热轧带钢表面缺陷数据量庞大、伪缺陷众多,不能及时、准确地判断其表面缺陷的问题,基于卷积神经网络深度学习技术,开发了一种带钢表面缺陷自动判定系统。介绍了该系统中在线采集模块、多通道结合分析模块、典型特征提取模块、缺陷严重性细化分类模块、缺陷自动评审模块的功能,缺陷分类准确率约90%,可以实现热轧带钢表面缺陷的快速、准确分类及自动判定。 相似文献
2.
3.
4.
针对传统带钢表面缺陷检测技术落后、效率不高及小目标识别能力不足等问题,提出一种改进的YOLOv5s-Tiny目标检测模型,在保持模型较小计算量的同时提升检测速度和识别精度。通过将主干网络GSP-Darknet53替换为轻量级GhostNet网络,减少模型参数的数量,提高推理速度。在主干网络加入CBAM注意力机制,通过通道注意力机制和空间注意力机制对特征信息进行融合增强,提高小目标检测精度,并将损失函数GIoU改进为EIoU,提高检测框定位能力。最后将改善后的训练模型格式转换后安装到手机安卓端验证优化的有效性。结果表明:在东北大学数据集中,改进后模型检测精度提高1.5%的同时,召回率提升了1.5%,参数量减少12.3%;安卓端检测速度约为120 ms,完成带钢缺陷的实时检测。 相似文献
5.
表面检测能探测到材料表面或近表面人眼所不能察觉到的缺陷,是常规无损检测的一个重要组成部分。在收集了大量带有各种特征表面缺陷的航空零件的基础上,阐述利用荧光渗透、着色、磁粉等表面检测技术,选择最佳工艺规范,检测出工件表面缺陷的基本原理,并将其制成图谱。对实际应用有较好的参考意义。 相似文献
6.
由磁偶极子理论证明,表面开口缺陷引起的漏磁场H正比于(d/2-kδ),其中d是缺陷深度,而δ是取决于工件和缺陷横截面的形状与尺寸的一较小长度,k是一个系数,它取决于缺陷侧壁上的磁荷分水岭。从而可以得出结论,当d很小时,H与d间近似为线性关系;而d增大时,它们之间则呈非线性关系。 相似文献
7.
钢材表面缺陷检测任务中,YOLO将目标检测转换为对位置信息的回归问题,实现高帧率实时检测,但对小目标缺陷定位精度有所欠缺。针对该问题,以YOLOv5s架构为基础,首先,在模型输入端设定动态尺度训练范式,提高小目标缺陷训练精度;其次,设计STD-CA模块利用图像转换技术,避免下采样过程中分辨率的降低,导致小目标缺陷特征信息的丢失,并引导特征提取能力,降低无关背景特征关注度,进一步提高模型小目标缺陷检测精度。结果表明,在NEU-DET数据集中,改进后模型在保证检测速度保持在54 frame/s的同时,平均精度均值达到86.6%,较YOLOv5s提高17.6%,对小目标缺陷定位更加准确,目前优于其他深度学习钢材实时检测模型。 相似文献
8.
基于传统X射线图像的铝合金轮毂铸件缺陷检测方法存在人工检测效率低、误检率高、检测精度较差等问题,提出一种基于深度学习的铝合金轮毂铸件图像缺陷检测方法。通过引入直方图均衡化方法,实现533组铝合金铸件X射线图像缺陷特征增强;同时基于Mosaic数据增广策略随机生成含有多尺度不同缺陷类型的新图像数据,提升图像的复杂度;修改了YOLOv5主干网络,引入SENet注意力机制模块对输入特征图的重要通道进行特征提取增强。结果表明,该方法对铸件缺陷平均检测精度(mAP)达到了99.6%,对比YOLOv3、YOLOv4以及YOLOv5主流算法,平均检测精度分别提升了9%、5.1%、4.2%。相较于原网络模型,常见的4种类型(气孔、缩松、裂纹、夹杂)铸件缺陷平均检测精度提升了10.83%。该方法具有更好的泛化能力,可实现铸件多类型缺陷的自动检测,能够满足工业实际需求。 相似文献
9.
针对现代工业生产环境对零件表面缺陷的高效率检测与计算需求,提出了一种基于YOLOv5算法网络的金属零件表面缺陷检测方法。通过引入以CBAM为基础构架的注意力机制,增强目标检测网络对特征图中重要信息的提取效率:针对小目标检测效率不佳的问题,融合了BiFPN网络与可变形卷积策略,提升算法对小目标缺陷的检测精度,降低小尺寸疵病漏检率。采用模型剪枝方法,有效降低了网络中冗余计算量,增强了算法的多种类平台嵌入泛化性,提升网络面向算力资源有限的移动平台时的兼容性。以NEU-DET数据集为例进行训练与测试,结果表明改进后的算法平均均值精度为98.5%,单帧计算速度为12.1 ms,能够实现针对金属工件表面缺陷的高精度、低延迟检测能力。 相似文献
10.
分析了冷轧重卷机组生产中带钢表面容易出现的典型缺陷特征及其成因,提出了在机组设计和设备设计方面应该采取的多种针对性的优化措施. 相似文献
11.
胡波 《机械制造文摘:焊接分册》2018,(4)
随着以深度神经网络为代表的深度学习模型取得突破性快速发展,同时得益于更强大的计算机、更大的数据集和能够训练更深网络的技术,深度学习在智能焊接等智能制造领域取得了大量应用。概述了深度学习技术在焊接过程控制、焊缝缺陷检测等方面的研究进展,当前的研究表明深度学习方法能够提高焊接过程实时控制精度和焊接缺陷的识别准确率。 相似文献
12.
13.
14.
15.
16.
17.
18.
19.
以磷酸盐石墨铸型作为研究对象,用2组不同的正交实验方案结果作为样本集,用BP神经网络对这2个样本进行了互预测,结果表明:对样本集进行恰当的预处理,包含信息量大的样本集能够对包含信息量小的样本集以极高的精度进行预测,而包含信息量小的样本集不能对包含信息量大的样本集进行预测。这给科研人员提供了新的实验设计 相似文献
20.
针对塑件注射成型多缺陷成因求解的模糊性与不确定性,考虑到神经网络在获取多维特征向量与对应输出向量之间非线性映射关系方面的优势,以及模糊技术在处理不精确信息方面的强大能力,提出将模糊理论和神经网络相结合,对塑件多缺陷成因进行判断、推理,并详细阐述了模糊神经网络用于塑件多缺陷诊断的整个过程。基于上述理论及Visual Prolog开发平台,开发了塑件注射成型多缺陷诊断智能系统,并进行了实例验证。结果表明,此系统具备较好的塑件多缺陷诊断能力以及一定的推广应用前景。 相似文献