首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
第六届中国健康信息处理会议(China Conference on Health Information Processing,CHIP2020)组织了中文医疗信息处理方面的6个评测任务,其中任务1为中文医学文本命名实体识别任务,该任务的主要目标是自动识别医学文本中的医学命名实体。共有253支队伍报名参加评测,最终37支队伍提交了80组结果,该评测以微平均F1值作为最终评估标准,提交结果中最高值达68.35%。  相似文献   

2.
实体关系抽取作为信息抽取领域内的重要研究方向,其目的是把无结构或半结构的自然语言文本中所蕴含的实体之间的语义关系抽取成结构化的关系三元组。人物关系抽取是实体关系抽取的细粒度分支,以往的实体关系抽取研究多针对来自新闻或百科的英文短句语料,对于中文文学作品的人物关系抽取的研究刚刚起步。该文针对中长篇中文文学作品的特点,首先引入对抗性学习框架来训练句子级的噪声分类器以降低数据集中人物关系数据噪声,并在此基础上构建了人物关系的分类模型MF-CRC。分类模型首先基于预训练模型BERT抽取文本内容的基本语义特征,并采用BiLSTM模型进行深层语义特征的获取,然后根据中文用语习惯抽取了中文人物姓氏、性别与关系指示特征并进行嵌入表示,最后基于多维特征融合完成了人物关系分类模型的训练。该文选用名著《平凡的世界》《人生》和《白鹿原》为研究对象,首次构建了三个通用的面向中文文学作品的人物关系标签数据集,并在这些数据集上进行对比实验及消融实验。结果表明,该文MF-CFC模型效果高于其他对比模型,分别在Micro-F1和Macro-F1指标上比SOTA模型高出1.92...  相似文献   

3.
李颖  郝晓燕  王勇 《计算机科学》2017,44(Z6):80-83
传统信息抽取针对特定的领域。当转换到新领域时,需要人工编写新的抽取规则和人工标记新的训练样本。开放信息抽取突破了传统信息抽取的局限性。现有的开放式信息抽取系统大多针对英文,然而,目前对于中文的研究相对较少,并主要以抽取三元组为主,没有针对中文抽取多元组的方法。因此提出了一种基于依存分析的中文开放式多元实体关系抽取方法。首先,对文本集进行预处理和依存关系分析;然后将动词视为候选关系词,将与此动词有满足条件的有效依存路径的基本名词短语视为实体词,关联两个及两个以上的实体词的关系词可与实体词组成候选多元实体关系组;最后,使用经过训练的逻辑回归分类器对多元实体关系组进行过滤。对百度百科数据集的抽取结果显示,所提方法在抽取大量实体关系多元组时准确性可达到81%。  相似文献   

4.
针对基于特征向量的实体关系抽取方法中特征向量一般构造方法存在的不足,提出了基于互信息的实体对特征向量构造方法.该方法引入词和实体关系类别之间的互信息作为一个句子中实体对左右两边上下文特征提取的判断标准,并对实体关系类别特征词条进行编码,在此基础上再对实体对左右两边的上下文信息进行编码.这样做压缩了实体对上下文信息编码的维数,突出了实体关系各类别特性.实验结果表明本文的实体关系特征向量构造方法提高了中文实体关系抽取的准确率和召回率.  相似文献   

5.
作为信息抽取任务中极为关键的一项子任务,实体关系抽取对于语义知识库的构建和知识图谱的发展都有着重要的意义。对于中文而言,语义关系更加复杂,实体关系抽取的作用也就愈加显著,因此,对中文实体关系抽取的研究方法进行详细考察极为必要。本文从实体关系抽取的产生和发展开始,对目前基于中文的实体关系抽取技术现状作了阐述;按照关系抽取方法对语料的依赖程度分为4类:有监督的实体关系抽取、无监督的实体关系抽取、半监督的实体关系抽取和开放域的实体关系抽取,并对这4类抽取方法进行具体的分析和比较;最后介绍深度学习在中文实体关系抽取上的应用成果和发展前景。  相似文献   

6.
实体关系抽取是信息抽取研究领域中的重要研究课题之一.针对已有方法在处理复杂文本上的不足,提出了复杂中文文本的实体关系抽取方法.结合中文文本的语法特征,提出了7条抽取关系特征序列的启发式规则,并采用语义序列核和KNN机器学习算法结合的方法来分类和标注关系的类型.通过对ACE评测定义下的两个子类的实体关系抽取,关系抽取的平均F值迭到了76%,明显高于传统的基于特征向量和最短依存路径核的方法.  相似文献   

7.
无指导的中文开放式实体关系抽取   总被引:1,自引:0,他引:1       下载免费PDF全文
传统的实体关系抽取需要预先定义关系类型体系,然而定义一个全面的实体关系类型体系是很困难的.开放式实体关系抽取技术解决了预先定义关系类型体系的问题,但是在中文上的研究还比较少.提出面向大规模网络文本的无指导开放式中文实体关系抽取方法,首先使用实体之间的距离限制和关系指示词的位置限制获取候选关系三元组;然后采用全局排序和类型排序的方法来挖掘关系指示词;最后使用关系指示词和句式规则对关系三元组进行过滤.在获取大量关系三元组的同时,还保证了80%以上的微观平均准确率.  相似文献   

8.
基于合一句法和实体语义树的中文语义关系抽取   总被引:1,自引:0,他引:1  
该文提出了一种基于卷积树核函数的中文实体语义关系抽取方法,该方法通过在关系实例的结构化信息中加入实体语义信息,如实体类型、引用类型和GPE角色等,从而构造能有效捕获结构化信息和实体语义信息的合一句法和实体语义关系树,以提高中文语义关系抽取的性能。在ACE RDC 2005中文基准语料上进行的关系探测和关系抽取的实验表明,该方法能显著提高中文语义关系抽取性能,大类抽取的最佳F值达到67.0,这说明结构化句法信息和实体语义信息在中文语义关系抽取中具有互补性。  相似文献   

9.
语义信息在命名实体间语义关系抽取中具有重要的作用。该文以《同义词词林》为例,系统全面地研究了词汇语义信息对基于树核函数的中文语义关系抽取的有效性,深入探讨了不同级别的语义信息和一词多义等现象对关系抽取的影响,详细分析了词汇语义信息和实体类型信息之间的冗余性。在ACE2005中文语料库上的关系抽取实验表明,在未知实体类型的前提下,语义信息能显著提高抽取性能;而在已知实体类型的情况下,语义信息也能明显提高某些关系类型的抽取性能,这说明《词林》语义信息和实体类型信息在中文语义关系抽取中具有一定的互补性。  相似文献   

10.
端到端实体关系抽取任务可以被分解成命名实体识别和关系抽取两个子任务,最近的工作多将这两个子任务联合建模。现有的流水线方法验证了在关系模型中融合实体类型信息的重要性和管道模型的潜力,但是它们忽略了文本中的某些实体可能同时具有多个类型,这种多义性的情况在中文数据集中尤为常见。为解决上述问题,提出了一种实体级联类型机制,并在此基础上开发了一个更适合中文关系抽取的管道模型,取名为CENTRELINE。这一流水线方法的实体模块是一个词-词关系分类模型,它以BERT和双向LSTM作为编码器、经过条件层归一化后引入空洞卷积,最后通过级联类型预测器输出实体及其级联类型。关系模块的输入仅由实体模块构建。该方法在DuIE1.0、DuIE2.0和CMeIE-V2数据集上的F1值分别比基线方法提高7.23%、6.93%和8.51%,并在DuIE1.0和DuIE2.0数据集上都实现了最先进的性能。消融实验表明,提出的级联类型机制和根据中文语言特征改进的管道模型,均对关系抽取性能具有明显的促进作用。  相似文献   

11.
崔博文  金涛  王建民 《计算机应用》2021,41(4):1055-1063
电子病历信息抽取技术能够从自由文本电子病历中获取到有用的关键信息,从而为医院的信息管理和后续的信息分析处理工作提供帮助.简要介绍了现阶段自由文本电子病历信息抽取的主要流程,分析了近十几年来关于自由文本电子病历中命名实体、实体修饰与实体间关系三类关键信息的单独抽取以及联合抽取方法的研究成果,对这些成果所采用的主要方法、使...  相似文献   

12.
基于树核函数的实体语义关系抽取方法研究   总被引:5,自引:2,他引:3  
该文描述了一种改进的基于树核函数的实体语义关系抽取方法,通过在原有关系实例的结构化信息中加入实体语义信息和去除冗余信息的方法来提高关系抽取的性能。该方法在最短路径包含树的基础上,首先加入实体类型、引用类型等与实体相关的语义信息,然后对树进行裁剪,去掉修饰语冗余和并列冗余信息,并扩充所有格结构,最后生成实体语义关系实例。在ACE RDC 2004基准语料上进行的关系检测和7个关系大类抽取的实验表明,该方法在较大程度上提高了实体语义关系识别和分类的效果,F值分别达到了79.1%和71.9%。  相似文献   

13.
古汉语文本承载着丰富的历史和文化信息, 对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用. 针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题, 提出了一种基于BERT古文预训练模型的实体关系联合抽取模型 (entity relation joint extraction model based on BERT-ancient-Chinese pre-trained model, JEBAC). 首先, 通过融合BiLSTM神经网络和注意力机制的BERT古文预训练模型 (BERT-ancient-Chinese pre-trained model integrated BiLSTM neural network and attention mechanism, BACBA), 识别出句中所有的subject实体和object实体, 为关系和object实体联合抽取提供依据. 接下来, 将subject实体的归一化编码向量与整个句子的嵌入向量相加, 以更好地理解句中subject实体的语义特征; 最后, 结合带有subject实体特征的句子向量和object实体的提示信息, 通过BACBA实现句中关系和object实体的联合抽取, 从而得到句中所有的三元组信息(subject实体, 关系, object实体). 在中文实体关系抽取DuIE2.0数据集和CCKS 2021的文言文实体关系抽取C-CLUE小样本数据集上, 与现有的方法进行了性能比较. 实验结果表明, 该方法在抽取性能上更加有效, F1值分别可达79.2%和55.5%.  相似文献   

14.
实体关系自动抽取   总被引:43,自引:7,他引:36  
实体关系抽取是信息抽取领域中的重要研究课题。本文使用两种基于特征向量的机器学习算法,Winnow 和支持向量机(SVM) ,在2004 年ACE(Automatic Content Extraction) 评测的训练数据上进行实体关系抽取实验。两种算法都进行适当的特征选择,当选择每个实体的左右两个词为特征时,达到最好的抽取效果,Winnow和SVM算法的加权平均F-Score 分别为73108 %和73127 %。可见在使用相同的特征集,不同的学习算法进行实体关系的识别时,最终性能差别不大。因此使用自动的方法进行实体关系抽取时,应当集中精力寻找好的特征。  相似文献   

15.
16.
中文实体关系抽取中的特征选择研究   总被引:9,自引:4,他引:9  
命名实体关系抽取是信息抽取研究领域中的重要研究课题之一。通过分析,本文提出将中文实体关系划分为: 包含实体关系与非包含实体关系。针对同一种句法特征在识别它们时性能的明显差异,本文对这两种关系采用了不同的句法特征集,并提出了一些适合各自特点的新的句法特征。在CRF 模型框架下,以ACE2007 的语料作为实验数据,结果表明本文的划分方法和新特征有效的提高了汉语实体关系抽取任务的性能。关键词: 计算机应用;中文信息处理;实体关系抽取;包含关系;非包含关系;特征选择;ACE 评测  相似文献   

17.
该文提出了一种基于卷积树核的无指导中文实体关系抽取方法。该方法以最短路径包含树作为关系实例的结构化表示形式,以卷积树核函数作为树相似度计算方法,并采用分层聚类方法进行无指导中文实体关系抽取。在ACE RDC 2005中文基准语料库上的无指导关系抽取实验表明,采用该方法的F值最高可达到60.1,这说明基于卷积树核的无指导中文实体关系抽取是行之有效的。  相似文献   

18.
针对实体关系抽取任务中的三元组重叠问题,基于编码器-解码器结构的联合抽取方法能够通过序列生成的方式加以解决。但现有方法没有充分利用实体类别信息,而实体类别信息对于构建更丰富的语义特征并进一步优化关系模型的效果具有重要意义。在使用编码器-解码器结构的基础上,融合实体类别信息构建实体关系联合抽取模型FETI。编码器采用经典Bi-LSTM结构,解码器采用树状解码替代传统的一维线性解码。同时,在解码阶段增加头尾实体类别的预测,并通过辅助损失函数进行约束,使模型能够更有效地利用实体类别信息。在百度公开的中文数据集DuIE上进行实验,结果表明,FETI的F1值达到0.758,相对于CopyMTL、WDec、MHS、Seq2UMTree模型提升了2.02%~9.86%,验证了融合实体类别信息对于提升实体关系抽取模型性能的有效性。此外,基于不同解码顺序和不同权重损失函数的实验结果表明,解码顺序对模型性能影响较大,而对主要任务的损失函数赋予较高权重,能够保证辅助任务为主要任务提供有效的背景知识,同时限制噪声的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号