首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In p-i-n structure a-Si solar cell a buffer layer with proper characteristics plays important role in improving the p/i interface of the cell, reducing mismatch of band gaps and number of recombination centres. However for p-i-n structure microcrystalline ( µc-Si: H) cell which has much less light induced degradation than a-Si:H cell, not much work has been done on development of proper buffer layer and its application to µc-Si:H cell. In this paper we have reported the development of two intrinsic oxide based microcrystalline layer having different characteristics for use as buffer layers at the p/i interface of µc-Si:H cell. Previously SiOx:H buffer layer has been used at the p/i interface which showed positive effects. To explore the possibility of improving the performance of p-i-n structure µc-Si:H cell further we have thought it interesting to use two buffer layers with different characteristics at the p/i interface. The two buffer layers have been characterized in detail and applied at the p/i interface of the µc-Si:H cell with positive effects on all the PV parameters mainly improves the open circuit voltage (Voc) and enhances short circuit current (Isc). The maximum initial efficiency obtained is 8.97% with dual buffer which is 6.7% higher than that obtained by using conventional single buffer layer at the p/i interface. Stabilized efficiency of the cell with dual buffer is found to be ~9.5% higher than that with single buffer after 600 h of light soakings.  相似文献   

2.
In this paper, the influence of i/p interface buffer layer on the performance of flexible n–i–p a-Si:H thin film solar cells is studied. The results show that the dopant distribution in the buffer layer has large effect on the property of solar cells. A larger open circuit voltage and fill factor can be obtained when methane is introduced into the chamber prior to diborane during the deposition of buffer layer. The AMPS simulation indicates that it is beneficial to improve the built-in electric field in the i layer when the carbon is doped prior to boron, thus the carrier transport properties are improved. By further optimizing the deposition parameter, an initial conversion efficiency of 5.668% is achieved for the a-Si:H thin film solar cells on the PI substrates at 150 °C.  相似文献   

3.
Wide bandgap (Eg) p-type window layer is very important for silicon based thin film solar cell to obtain high performance, especially high open-circuit voltage (VOC). In this work, the influence of the deposition pressure on the properties of p-type a-Si:H window layer doped by trimethylboron (TMB) in plasma enhanced chemical vapor deposition (PECVD) was investigated systematically by transmission, Raman, and Fourier transform infrared (FTIR) spectroscopies. As a result, high performance hydrogenated amorphous silicon (a-Si:H) p–i–n superstrate solar cell with VOC up to 927 mV was successfully achieved on Asahi Type-U SnO2:F coated glass. In this case, excellent wide bandgap p-type a-Si:H window layer was fabricated under a mild deposition condition, including a low hydrogen dilution ratio (H2/SiH4) of 20, a relatively high deposition temperature of 220 °C, which was also adopted for the i-layer and n-layer deposition, and a moderate deposition pressure of about 160 Pa. We think it is the compromise between wide Eg and good microstructure quality of the p-layer that brings about the good solar cell performance. Such p-type window layer will be very helpful for the fabrication of a-Si:H solar cell, especially of the cell finished in a single PECVD chamber, due to its mild deposition condition.  相似文献   

4.
Single junction a-Si:H solar cell using oxide based window and buffer layer was fabricated by using a conventional plasma enhanced chemical vapor deposition (PECVD) technique. The impact of oxide based window layers and the effect of oxide buffer layer thickness on light induced degradation are investigated. Solar cells with optimized oxide based window and buffer layers have been fabricated with an optical gap of 1.97 eV and 1.86 eV. On comparing these solar cells with carbide based window and buffer layers, it is found that light induced degradation (LID) of oxide based cells is almost 4% less than the carbide based ones. Oxide based cells show significant improvement in quantum efficiency for lower wavelength region, compared to carbide based cells. Stabilized efficiency after 1000 h light soaking for the oxide and carbide based solar cells is found to be 7.55% and 6.50%, respectively.  相似文献   

5.
Cu-based semiconductors Cu2FeSnSe4 (CFTSe) and Cu(In, Al)Se2 (CIAS) have been fabricated using radio-frequency magnetron sputtering combined with rapid thermal selenization processing. For CFTSe, the heating rate ranging from 60 to 150 °C/min results in a difference in structure, morphology and optical properties. Thin film exhibits a pure phase structure, smooth surface and a band gap of 1.19 eV as the heating rate elevated to 90 °C/min. Furthermore, the CFTSe thin film selenized at 90 °C/min own the smallest value of cell volume compared with the others samples, which represents a more stable structure. In terms of the other Cu-based material CIAS, three different selenization pressures, i.e., 1, 5 and 10 Torr, have been employed for CIAS preparation. Thin film transforms into single phase with dense morphology along with the pressure of 1 Torr. The diverse band gap of CIAS thin films from 1.34 to 2.18 eV attribute to two reasons: (i) the various Al content will affect the hybridization degree of Al–Se, and finally tunes the band structure, (ii) amounts of CuSe has a certain degree of effect on the band gap of the CIAS. In addition, the electrical properties of CFTSe and CIAS are also researched with the open circuit voltage (Voc) of 94 and 365 mV, respectively, signifying potential applications of CFTSe and CIAS for the thin film solar cells.  相似文献   

6.
《Solid-state electronics》2006,50(9-10):1495-1500
A voltage-tunable amorphous p–i–n thin-film light emitting diodes (TFLEDs) with SiO2-isolation on n+-type crystalline silicon (c-Si) has been proposed and fabricated successfully. The structure of the device with i-a-SiC:H and i-a-SiN:H luminescent layers is indium–tin–oxide (ITO)/p+-a-Si:H/p+-a-SiC:H/i-a-SiC:H/i-a-SiN:H/n+-a-SiCGe: H/n+-a-SiC:H/n+-c-Si/Al. This device revealed a brightness of 695 cd/m2 at an injection current density of 300 mA/cm2. Its EL (electroluminescence) peak wavelength exhibited blue-shift from 655 to 565 nm with applied forward-bias (V) increasing from 15 to 19 V, but the EL peak wavelength was red-shifted from 565 to 670 nm with further increase of V from 19 to 23 V. By comparing with the EL spectra from p–i–n TFLEDs with i-a-SiC:H or i-a-SiN:H luminescent layer only, the EL spectrum of this TFLED could consist of three bands of radiations from the tail-to-tail-state recombinations in (1) i-a-SiC:H layer, (2) i-a-SiN:H layer, and (3) i-a-SiC:H/p+-a-SiC:H junction.  相似文献   

7.
《Microelectronics Journal》2007,38(4-5):496-500
Substantial advances have been realized in the aim to achieve blue–green light emitting devices based on Zn(S)Se wide band gap II–VI semi-conductor materials. Two light emitting diodes p on n and n on p heterostructures were grown on GaAs substrate by molecular beam epitaxy. The active layer was a single ZnCdSe quantum well, with ZnSSe guiding layers and ZnSe cladding layers. p-GaInP, p-AlGaAs and p-CdZnSe buffer layers were deposited at the p-ZnSe/GaAs interface to reduce the valence band offset in the case of n on p heterostructures. Electrical and optical properties were investigated using current voltage, capacitance voltage, electroluminescence, photoluminescence and photocurrent measurements at room temperature. Blue–green luminescence centered at 516.7 nm is observed. The highest luminescence intensity is observed under 7 V forward bias. Photoluminescence spectrum shows two wide peaks at 2.2 and 1.9 eV energies. These energies are attributed to the transitions between ZnSe and GaAs conduction bands and the deep level at Ev−0.6 eV. Absorption process from ZnSe and ZnSSe conduction bands to the shallow nitrogen acceptor level (2.6 and 2.8 eV, respectively) have been observed using photocurrent measurements. From these results we present a band alignment diagram which confirms the presence of the two levels at 0.1 and 0.6 eV from the valence band of ZnSe.  相似文献   

8.
Wide band gap and highly conducting n-type nano-crystalline silicon film can have multiple roles in thin film solar cell. We prepared phosphorus doped micro-crystalline silicon oxide films (n-μc-SiO:H) of varying crystalline volume fraction (Xc) and applied some of the selected films in device fabrication, so that it plays the roles of n-layer and back reflector in p-i-n type solar cells. It is generally understood that a higher hydrogen dilution is needed to prepare micro-crystalline silicon, but in case of the n-μc-SiO:H an optimized hydrogen dilution was found suitable for higher Xc. Observed Xc of these films mostly decreased with increased plasma power (for pressure<2.0 Torr), increased gas pressure, flow rate of oxygen source gas and flow rates of PH3>0.08 sccm. In order to determine deposition conditions for optimized opto-electronic and structural characteristics of the n-μc-SiO:H film, the gas flow rates, plasma power, deposition pressure and substrate temperature were varied. In these films, the Xc, dark conductivity (σd) and activation energy (Ea) remained within the range of 0–50%, 3.5×10−10 S/cm to 9.1 S/cm and 0.71 eV to 0.02 eV, respectively. Low power (30 W) and optimized flow rates of H2 (500 sccm), CO2 (5 sccm), PH3 (0.08 sccm) showed the best properties of the n-μc-SiO:H layers and an improved performance of a solar cell. The photovoltaic parameters of one of the cells were as follows, open circuit voltage (Voc), short circuit current density (Jsc), fill-factor (FF), and photovoltaic conversion efficiency (η) were 950 mV, 15 mA/cm2, 64.5% and 9.2% respectively.  相似文献   

9.
We investigated the effect of active layer thickness on recombination kinetics of poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) based solar cells. Analysis of the fitted Lambert W-function of illuminated current density–voltage (JV) characteristics revealed increased recombination processes with increased active layer thicknesses. The ideality factor extracted from PCDTBT:PCBM solar cells continuously increased from 1.89 to 3.88 when photoactive layer thickness was increased from 70 to 150 nm. We found that such increase in ideality factor is closely related to the defect density which is increased with increased photoactive layer thickness beyond 110 nm. Therefore, the different density of defect states in PCDTBT:PCBM solar cells causes the different recombination paths where solar cells with a thicker active layer (?110 nm) are considered to undergo coupled trap-assisted recombination processes while single-defect trap-assisted recombination is dominant for thinner (70–90 nm) PCDTBT:PCBM solar cells. As a result, we found that the optimal efficiencies of PCDTBT:PC71BM solar cells were limited to the active layers between 70 and 90 nm. Particularly, when PCDTBT:PC71BM solar cells were optimized with an active layer thickness of 70 nm, energy conversion efficiency reached 6.5% while an increase in thickness led to the reduction of efficiency to 4.7% at 133 nm but then an increase to 5.02% at 150 nm.  相似文献   

10.
Cu2ZnSnS4 (CZTS) is low cost and constitutes non-toxic materials abundant in the earth crust. Environment friendly solar cell absorber layers were fabricated by a thermal co-evaporation technique. Elemental composition of the film was stated by energy dispersive spectroscopy (EDS). Some optical and electrical properties such as absorption of light, absorption coefficient, optical band gap charge carrier density, sheet resistance and mobility were extracted. Optical band gap was found to be as 1.44 eV, besides, charge carrier density, resistivity and mobility were found as 2.14×1019 cm−3, 8.41×10−4 Ω cm and 3.45×102 cm2 V−1 s−1, respectively. In this study Ag/CZTS/n-Si Schottky diode was fabricated and basic diode parameters including barrier height, ideality factor, and series resistance were concluded using current–voltage and capacitance–voltage measurements. Barrier height and ideality factor values were found from the measurements as 0.81 eV and 4.76, respectively, for Ag/CZTS/n-Si contact.  相似文献   

11.
《Solid-state electronics》2006,50(9-10):1501-1505
The optoelectronic characteristics of poly(2-methoxy-5-(2′ethyl-hexoxy)-1,4-phenylene-vinylene) (MEH-PPV) polymer LEDs (PLEDs) have been improved by employing thin doped composition-graded (CG) hydrogenated amorphous silicon–carbide (a-SiC:H) films as carrier injection layers and O2-plasma treatment on indium–tin-oxide (ITO) transparent electrode, as compared with previously reported ones having doped constant-optical-gap a-SiC:H carrier injection layers. For PLEDs with an n-type a-SiC:H electron injection layer (EIL) only, the electroluminescence (EL) threshold voltage and brightness were improved from 7.3 V, 3162 cd/m2 to 6.3 V, 5829 cd/m2 (at a current density J = 0.6 A/cm2), respectively, by using the CG technique. The enhancement of EL performance of the CG technique was due to the increased electron injection efficiency resulting from a smoother barrier and reduced recombination of charge carriers at the EIL and MEH-PPV interface. Also, surface modification of the ITO transparent electrode by O2-plasma treatment was used to further improve the EL threshold voltage and brightness of this PLED to 5.1 V, 6250 cd/m2 (at J = 0.6 A/cm2). Furthermore, by employing the CG n[p]-a-SiC:H film as EIL [hole injection layer (HIL)] and O2-plasma treatment on the ITO electrode, the brightness of PLEDs could be enhanced to 9350 cd/m2 (at a J = 0.3 A/cm2), as compared with the 6450 cd/m2 obtained from a previously reported PLED with a constant-optical-gap n-a-SiCGe:H EIL and p-a-Si:H HIL.  相似文献   

12.
An intrinsic hydrogenated amorphous silicon (a-Si:H(i)) film and a doped silicon film are usually combined in the heterojunction contacts of silicon heterojunction (SHJ) solar cells. In this work, a post-doping process called catalytic doping (Cat-doping) on a-Si:H(i) is performed on the electron selective side of SHJ solar cells, which enables a device architecture that eliminates the additional deposition of the doped silicon layer. Thus, a single phosphorus Cat-doping layer combines the functions of two other layers by enabling excellent interface passivation and high carrier selectivity. The overall thinner layer on the window side results in higher spectral response at short wavelengths, leading to an improved short-circuit current density of 40.31 mA cm−2 and an efficiency of 23.65% (certified). The cell efficiency is currently limited by sputter damage from the subsequent transparent conductive oxide fabrication and low carrier activation in the a-Si:H(i) with Cat-doping. Numerical device simulations show that the a-Si:H(i) with Cat-doping can provide sufficient field effect passivation even at lower active carrier concentrations compared to the as-deposited doped layer, due to the lower defect density.  相似文献   

13.
In this study, we report an appreciably increased efficiency from 6% up to 9.1% of hydrogenated amorphous silicon germanium (a-SiGe:H) thin film solar cells by using a combination of different p-doped window layers, such as boron doped hydrogenated amorphous silicon (p-a-Si:H), amorphous silicon oxide (p-a-SiOx:H), microcrystalline silicon (p-µc-Si:H), and microcrystalline silicon oxide (p-µc-SiOx:H). Optoelectronic properties and the role of these p-layers in the enhancement of a-SiGe:H cell efficiency were also examined and discussed. An improvement of 1.62 mA/cm2 in the short-circuit current density (Jsc) is attributed to the higher band gap of p-type silicon oxide layers. In addition, an increase in open-circuit voltage (Voc) by 150 mV and fill factor (FF) by 6.93% is ascribed to significantly improved front TCO/p-layer interface contact.  相似文献   

14.
We propose a new structural model for the Al(1 1 1)/Al2O3(0 0 0 1) interface based on density functional theory calculations. The ultrathin interface structure is shown to consist of two Al layers, one that is oxide-like and the other metal-like. Our model interface reproduces the barrier height to the oxide conduction band edge and predicts the oxide overlayer to lower the metal work function by 0.49 eV.  相似文献   

15.
The heavy B-doping of an intrinsic Si(1 0 0) wafer has been performed by irradiating a B-doped Si nanoparticle film on the surface of the Si(1 0 0) substrate with energy densities of 8.0 and 16.0 J/cm2 by 532-nm laser light. The thicknesses of the heavily doped surface layers were investigated using Raman spectroscopy. The observed 488.0-nm-excited Raman bands were decomposed into two bands: a Fano-type band due to the heavily doped Si surface layer and a Voigt band due to the lightly doped, intrinsic Si region. The analysis of the Fano-type band indicated that the carrier concentration of the heavily doped region was larger than approximately 1019 cm−3. Based on the two-state model, the thicknesses of the heavily doped surface layers were 480 and 630 nm for the samples prepared with energy densities of 8.0 and 16.0 J/cm2, respectively. These values were consistent with those obtained by secondary ion mass spectroscopy (SIMS).  相似文献   

16.
《Organic Electronics》2014,15(9):2141-2147
This paper reports on the detail analysis of the DC electrical and photoelectrical properties of the high-efficient (η = 8.01% under standard 100 mW/cm2 AM1.5 illumination) small molecule bulk heterojunction (SM BHJ) solar cells p-DTS(FBTTh2)2/PC70BM. In this SM BHJ solar cell, the dark diode current is determined by the multistep tunnel-recombination via interface states at low forward bias (V < 0.65 V) and the interface state assisted thermionic emission at high forward bias (V > 0.65 V). The effect of illumination on the diode current was also quantitatively investigated. It was observed a reduced Shockley–Read–Hall recombination via interface states at large forward bias (from the maximum power point to the open-circuit conditions). The expression of the load IV characteristic of the illuminated high-efficient SM BHJ solar cells was derived in the presence of the light dependent series and shunt resistance.  相似文献   

17.
We report the use of chemically synthesized gold (Au)–silica core–shell nanorods with the length of 92.5 ± 8.0 nm and diameter of 34.3 ± 4.0 nm for the efficiency enhancement of bulk heterojunction (BHJ) polymer solar cells. Silica coated Au nanorods were randomly blended into the BHJ layers of these solar cells. This architecture inhibits the carrier recombination at the metal/polymer interface and effectively exploits light absorption at the surface plasmon resonance wavelengths of the Au–silica nanorods. To match the two plasmon resonant peaks of the Au–silica nanorods, we employed a low bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′] dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) to construct a solar cell. The absorption spectrum of PCPDTBT:[6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) is relatively wide and matches the two plasmon resonance peaks of Au–silica nanorods, which leads to greater plasmonic effects. We also constructed the poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC60BM) cells for comparison. The absorption spectrum of P3HT:PC60BM only overlaps one of the plasmon resonance peak of Au–silica nanorods. The efficiency of the P3HT:PC60BM device incorporating optimized Au–silica nanorods is enhanced by 12.9% from 3.17% to 3.58%, which is due to the enhanced light absorption. Compared with the P3HT:PC60BM device with Au–silica nanorods, the PCPDTBT:PC70BM device with 1 wt% Au–silica nanorods concentration has a higher efficiency of 4.4% with an increase of 26%.  相似文献   

18.
Using high-work-function material MoO3 as a p-type dopant, efficient single-layer hybrid organic light-emitting diodes (OLEDs) with the p–i–n homojunction structure are investigated. When MoO3 and Cs2CO3 are doped into the conventional emitting/electron-transport material tris-(8-hydroxyquinoline) aluminum (Alq3), respectively, a significant increase in p- and n-type conductivities is observed compared to that of intrinsic Alq3 thin films. With optimal doping, the hole and electron mobilities in Alq3:MoO3 and Alq3:Cs2CO3 films was estimated to be 9.76 × 10−6 and 1.26 × 10−4 cm2/V s, respectively, which is about one order of magnitude higher than that of the undoped device. The p–i–n OLEDs outperform undoped (i–i–i) and single-dopant (p–i–i and i–i–n) OLEDs; they have the lowest turn-on voltage (4.3 V at 1 cd/m2), highest maximum luminance (5860 cd/m2 at 11.4 V), and highest luminous efficiency (2.53 cd/A at 100 mA/cm2). These values are better than those for bilayer heterojunction OLEDs using the same emitting layer. The increase in conductivity can be attributed to the charge transfer process between the Alq3 host and the dopant. Due to the change of carrier concentration in the Alq3 films, the Fermi level of Alq3 is close to the highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) energy levels upon p- and n-type doping, respectively, and the carrier injection efficiency can thus be enhanced because of the lower carrier injection barrier. The carriers move closer to the center energy levels of the HOMO or LUMO distributions, which increases the hopping rate for charge transport and results in an increase of charge carrier mobility. The electrons are the majority charge carriers, and both the holes and electrons can be dramatically injected in high numbers and then efficiently recombined in the p–i–n OLEDs. As a result, the improved conductivity characteristics as well as the appropriate energy levels of the doped layers result in improved electroluminescent performance of the p–i–n homojunction OLEDs.  相似文献   

19.
We report on the adhesion of weak interfaces in inverted P3HT:PCBM-based polymer solar cells (OPV) with either a conductive polymer, PEDOT:PSS, or a metal oxide, molybdenum trioxide (MoO3), as the hole transport layer. The PEDOT:PSS OPVs were prepared by spin or spray coating on glass substrates, or slot-die coating on flexible PET substrates. In all cases, we observed adhesive failure at the interface between the P3HT:PCBM with PEDOT:PSS layer. The adhesion energy measured for the solar cells made on glass substrates was about 1.8 J/m2, but only 0.5 J/m2 for the roll-to-roll processed flexible solar cells. The adhesion energy was insensitive to the PEDOT:PSS layer thickness in the range of 10–40 nm. A marginal increase in adhesion energy was measured with increased O2 plasma power. Compared to solution processed PEDOT:PSS, we found that thermally evaporated MoO3 adheres less to the P3HT:PCBM layer, which we attributed to the reduced mixing at the MoO3/P3HT:PCBM interface during the thermal evaporation process. Insights into the mechanisms of delamination and the effect of different material properties and processing parameters yield general guidelines for the design of more reliable organic photovoltaic devices.  相似文献   

20.
Hydrogenated microcrystalline silicon (μc-Si:H) intrinsic films and solar cells with n-i-p configuration were prepared by plasma enhanced chemical vapor deposition (PECVD). The influence of n/i and i/p buffer layerson the μc-Si:H cell performance was studied in detail. The experimental results demonstrated that the efficiency is much improved when there is a higher crystallinity at n/i interface and an optimized a-Si:H buffer layer at i/p interface. By combining the above methods, the performance ofμc-Si:H single-junction and a-Si:H/μc-Si:H tandemsolar ceils has been significantly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号