首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled Receptors (GPCRs) play a central role in many physiological processes and, consequently, constitute important drug targets. In particular, the search for allosteric drugs has recently drawn attention, since they could be more selective and lead to fewer side effects. Accordingly, computational tools have been used to estimate the druggability of allosteric sites in these receptors. In spite of many successful results, the problem is still challenging, particularly the prediction of hydrophobic sites in the interface between the protein and the membrane. In this work, we propose a complementary approach, based on dynamical correlations. Our basic hypothesis was that allosteric sites are strongly coupled to regions of the receptor that undergo important conformational changes upon activation. Therefore, using ensembles of experimental structures, normal mode analysis and molecular dynamics simulations we calculated correlations between internal fluctuations of different sites and a collective variable describing the activation state of the receptor. Then, we ranked the sites based on the strength of their coupling to the collective dynamics. In the β2 adrenergic (β2AR), glucagon (GCGR) and M2 muscarinic receptors, this procedure allowed us to correctly identify known allosteric sites, suggesting it has predictive value. Our results indicate that this dynamics-based approach can be a complementary tool to the existing toolbox to characterize allosteric sites in GPCRs.  相似文献   

2.
G protein-coupled receptors (GPCRs) are involved in a vast majority of signal transduction processes. Although they span the cell membrane, they have not been considered to be regulated by the membrane potential. Numerous studies over the last two decades have demonstrated that several GPCRs, including muscarinic, adrenergic, dopaminergic, and glutamatergic receptors, are voltage regulated. Following these observations, an effort was made to elucidate the molecular basis for this regulatory effect. In this review, we will describe the advances in understanding the voltage dependence of GPCRs, the suggested molecular mechanisms that underlie this phenomenon, and the possible physiological roles that it may play.  相似文献   

3.
Hormones and many other neurotransmitters, growth factors, odorant molecules, and light all present stimuli for a class of membrane-anchored receptors called G protein-coupled receptors (GPCRs). The GPCRs are the largest family of cell-surface receptors involved in signal transduction. About 1% of all known genes of Drosophila and more than 5% of the genes of Caenorhabditis elegans encode GPCRs. In addition, more than 50% of current therapeutic agents on the market target these receptors. When the enormous biological and pharmaceutical importance of these receptors is considered, it is surprising how little is known about the mechanism with which these receptors recognize their natural ligands. In this review we present a structural approach, utilizing techniques of high-resolution NMR spectroscopy, to address the question of whether peptides from the neuropeptide Y family of neurohormones are recognized directly from solution or from the membrane-bound state. In our studies we discovered that the structures of the membrane-bound species are better correlated to the pharmacological properties of these peptides than the solution structures are. These findings are supported by the observation that many biophysical properties of these peptides seem to be optimized for membrane binding. We finally present a scenario of possible events during receptor recognition.  相似文献   

4.
Opioid receptors are G-protein-coupled receptors (GPCRs) part of cell signaling paths of direct interest to treat pain. Pain may associate with inflamed tissue characterized by acidic pH. The potentially low pH at tissue targeted by opioid drugs in pain management could impact drug binding to the opioid receptor, because opioid drugs typically have a protonated amino group that contributes to receptor binding, and the functioning of GPCRs may involve protonation change. In this review, we discuss the relationship between structure, function, and dynamics of opioid receptors from the perspective of the usefulness of computational studies to evaluate protonation-coupled opioid-receptor interactions.  相似文献   

5.
Chemotaxis, or directional movement towards an extracellular gradient of chemicals, is necessary for processes as diverse as finding nutrients, the immune response, metastasis and wound healing. Activation of G-protein coupled receptors (GPCRs) is at the very base of the chemotactic signaling pathway. Chemotaxis starts with binding of the chemoattractant to GPCRs at the cell-surface, which finally leads to major changes in the cytoskeleton and directional cell movement towards the chemoattractant. Many chemotaxis pathways that are directly regulated by Gβγ have been identified and studied extensively; however, whether Gα is just a handle that regulates the release of Gβγ or whether Gα has its own set of distinct chemotactic effectors, is only beginning to be understood. In this review, we will discuss the different levels of regulation in GPCR signaling and the downstream pathways that are essential for proper chemotaxis.  相似文献   

6.
The widespread use of anovulatory compounds and the well-known effects of sex hormones on various aspects of metabolism prompted this review of our work and the work of others on observed changes in lipid metabolism resulting from the administration of oral contraceptives and their components. In the rat, female sex hormone administration results in a decreased plasma cholesterol level, an accumulation of cholesterol in liver and a decreased hepatic cholesterol biosynthesis. On the other hand, cholesterol biosynthesis is enhanced in ovaries and adrenals. There is also a diminished alpha lipoprotein content and a corresponding decrease in the alpha/beta lipoprotein ratio. In some cases these changes are comparable to those observed during pregnancy. The results of sex hormone administration to women are more variable. In this case the most often observed effect is hypertriglyceridemia. Changes in lipoprotein content and distribution are also evident and may be the result of changes in metabolism in the liver, e.g., lipid synthesis or lipid transport from liver to plasma and tissues, or both. Many of these changes may be mediated indirectly through the action of estrogenprogestin on other hormones. In both species the effects of oral contraceptives are attributable principally to the estrogen component. The combination of estrogen with progestin compounds, which constitutes the oral contraceptive, modifies the effects of estrogen administered alone.  相似文献   

7.
Arrestins are a small family of proteins that bind G protein-coupled receptors (GPCRs). Arrestin binds to active phosphorylated GPCRs with higher affinity than to all other functional forms of the receptor, including inactive phosphorylated and active unphosphorylated. The selectivity of arrestins suggests that they must have two sensors, which detect receptor-attached phosphates and the active receptor conformation independently. Simultaneous engagement of both sensors enables arrestin transition into a high-affinity receptor-binding state. This transition involves a global conformational rearrangement that brings additional elements of the arrestin molecule, including the middle loop, in contact with a GPCR, thereby stabilizing the complex. Here, we review structural and mutagenesis data that identify these two sensors and additional receptor-binding elements within the arrestin molecule. While most data were obtained with the arrestin-1-rhodopsin pair, the evidence suggests that all arrestins use similar mechanisms to achieve preferential binding to active phosphorylated GPCRs.  相似文献   

8.
The lipid microenvironment of membrane proteins can affect their structure, function, and regulation. We recently described differential effects of acute modification of membrane cholesterol on the function of type 1 and 2 cholecystokinin (CCK) receptors. We now explore the regulatory impact of chronic cholesterol modification on these receptors using novel receptor-bearing cell lines with elevated membrane cholesterol. Stable CCK1R and CCK2R expression was established in clonal lines of 25RA cells having gain-of-function in SCAP [sterol regulatory element binding protein (SREBP) cleavage-activating protein] and SRD15 cells having deficiencies in Insig-1 and Insig-2 enzymes affecting HMG CoA reductase and SREBP. Increased cholesterol in the plasma membrane of these cells was directly demonstrated, and receptor binding and signaling characteristics were shown to reflect predicted effects on receptor function. In both environments, both types of CCK receptors were internalized and recycled normally in response to agonist occupation. No differences in receptor distribution within the membrane were appreciated at the light microscopic level in these CHO-derived cell lines. Fluorescence anisotropy was studied for these receptors occupied by fluorescent agonist and antagonist, as well as when tagged with YFP. These studies demonstrated increased anisotropy of the agonist ligand occupying the active state of the CCK1R in a cholesterol-enriched environment, mimicking fluorescence of the uncoupled, inactive state of this receptor, while there was no effect of increasing cholesterol on fluorescence at the CCK2R. These cell lines should be quite useful for examining the functional characteristics of potential drugs that might be used in an abnormal lipid environment.  相似文献   

9.
Smell and taste are among the basic senses with which we perceive the world around us. In addition to enabling recognition of chemical moieties that provide social or nutritional clues, taste and smell receptors are expressed in many extraoral tissues, including the gastrointestinal, respiratory, and reproductive systems. It is, therefore, likely that taste and smell receptors have additional physiological roles, which are currently under intensive study. Most of the taste modalities, as well as olfaction, are mediated by G-protein coupled receptors (GPCRs). Recent breakthroughs in crystallography and signaling studies of GPCRs (celebrated by the 2012 Nobel Prize in Chemistry to Robert Lefkowitz and Brian Kobilka) provide excellent opportunities for applying this information towards furthering our understanding of taste and smell signaling. No crystal structures of odorant or taste receptors are currently available. However, computational techniques, many of which stem from the pioneering contributions of the 2013 Nobel Prize in Chemistry laureates, Martin Karplus, Michael Levitt, and Arieh Warshel, can shed light on the function of taste and olfactory GPCRs. In this review, we highlight examples of iterative combinations of simulation and experiment that were successfully applied toward delineating binding modes of tastants and odorants and toward predicting additional ligands. Further studies are required in order to answer remaining questions regarding receptor promiscuity versus selectivity, the details of receptor coupling to G-proteins, and the roles of oligomerization and of allosteric modulation in taste and smell transduction.  相似文献   

10.
The binding of squalene, lanosterol, desmosterol, and cholesterol to proteins in 105,000 g supernatant fraction (S105) from brain and liver of rats was investigated. The S105 fractions from both tissues contain specific binding sites for sterols, which are sensitive to trypsin. The dissociation constants for squalene and sterol protein complexes were in the range of 10−6 M and were not appreciably different for proteins in brain and liver S105. Competition studies revealed that both brain and liver S105 contain one receptor protein which binds lanosterol and is specific for methyl sterols, and a second receptor which binds both desmosterol and cholesterol. Binding of 7-dehydrocholesterol reported by others must occur at a third independent site since this compound does not interfere with the binding of lanosterol, desmosterol, or cholesterol. Although binding of squalene to proteins in brain and liver S105 does occur, we were unable to show the specificity of squalene binding. The concentration of desmosterol and cholesterol binding sites, which ranged from 6 to 10 nmol/mg protein, was 3- to 5-fold higher than the concentration of squalene and lanosterol binding sites (1.6–2.3 nmol/mg protein). The brain S105 from suckling rats contained fewer binding sites for desmosterol and cholesterol than the brain S105 from weaned rats. However, the concentration of lanosterol binding sites in brain S105 did not show an age-dependent change. The receptor proteins in brain and liver appear to be identical.  相似文献   

11.
Binding of peptide hormones to G protein-coupled receptors is believed to be mediated through formation of contacts of the ligands with residues of the extracellular loops of family 1 GPCRs. Here we have investigated whether additional binding sites exist within the N-terminal domain, as studied in the form of binding of peptides from the neuropeptide Y (NPY) family to the N terminus of the Y4 receptor (N-Y4). The N-terminal domain of the Y4 receptor has been expressed in isotopically enriched form and studied by solution NMR spectroscopy. The peptide is unstructured in solution, whereas a micelle-associated helical segment is formed in the presence of dodecylphosphocholine (DPC) or sodium dodecylsulfate (SDS). As measured by surface plasmon resonance (SPR) spectroscopy, N-Y4 binds with approximately 50 microM affinity to the pancreatic polypeptide (PP), a high-affinity ligand to the Y4 receptor, whereas binding to neuropeptide Y (NPY) and peptide YY (PYY) is much weaker. Residues critical for binding in PP and in N-Y4 have been identified by site-directed mutagenesis. The data indicate that electrostatic interactions dominate and that this interaction is mediated by acidic ligand and basic receptor residues. Residues of N-Y4 are likely to contribute to the binding of PP, and in addition might possibly also help to transfer the hormone from the membrane-bound state into the receptor binding pocket.  相似文献   

12.
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Here, we review the impact of high-density lipoproteins (HDL) on sepsis from the perspective of biochemistry and pathophysiology, epidemiological research, and intervention studies in animals. Pathogen lipid moieties are major ligands for innate immunity receptors, such as toll-like receptors. The binding of pathogen-associated lipids to lipoproteins leads to sequestration, neutralization, and inactivation of their pro-inflammatory effects. Lipoproteins constitute an arm of the innate immune system. Pathogen-associated lipids can be removed from the body via the reverse lipopolysaccharide transport pathway in which HDL play a key role. Independent of the capacity for sequestration, the direct anti-inflammatory effects of HDL may counteract the development of sepsis. Mendelian randomization research using genetic variants associated with HDL cholesterol as an instrumental variable was consistent with a probable causal relationship between increased HDL cholesterol levels and decreased risk of infectious hospitalizations. Low HDL cholesterol independently predicts an adverse prognosis in sepsis both in observational epidemiology and in Mendelian randomization studies. Several HDL-associated enzymes, including phospholipid transfer protein (PLTP) and cholesterol ester transfer protein (CETP), undergo profound changes during sepsis. Potential HDL-directed interventions for treatment of sepsis include apolipoprotein A-I-based therapies, recombinant PLTP, and CETP inhibition.  相似文献   

13.
Throughout evolution, the need for single-celled organisms to associate and form a single cluster of cells has had several evolutionary advantages. In complex, multicellular organisms, each tissue or organ has a specialty and function that make life together possible, and the organism as a whole needs to act in balance and adapt to changes in the environment. Sensory organs are essential for connecting external stimuli into a biological response, through the senses: sight, smell, taste, hearing, and touch. The G-protein-coupled receptors (GPCRs) are responsible for many of these senses and therefore play a key role in the perception of the cells’ external environment, enabling interaction and coordinated development between each cell of a multicellular organism. The malaria-causing protozoan parasite, Plasmodium falciparum, has a complex life cycle that is extremely dependent on a finely regulated cellular signaling machinery. In this review, we summarize strong evidence and the main candidates of GPCRs in protozoan parasites. Interestingly, one of these GPCRs is a sensor for K+ shift in Plasmodium falciparum, PfSR25. Studying this family of proteins in P. falciparum could have a significant impact, both on understanding the history of the evolution of GPCRs and on finding new targets for antimalarials.  相似文献   

14.
Signaling bias is a promising characteristic of G protein-coupled receptors (GPCRs) as it provides the opportunity to develop more efficacious and safer drugs. This is because biased ligands can avoid the activation of pathways linked to side effects whilst still producing the desired therapeutic effect. In this respect, a deeper understanding of receptor dynamics and implicated allosteric communication networks in signaling bias can accelerate the research on novel biased drug candidates. In this review, we aim to provide an overview of computational methods and techniques for studying allosteric communication and signaling bias in GPCRs. This includes (i) the detection of allosteric communication networks and (ii) the application of network theory for extracting relevant information pipelines and highly communicated sites in GPCRs. We focus on the most recent research and highlight structural insights obtained based on the framework of allosteric communication networks and network theory for GPCR signaling bias.  相似文献   

15.
The adipokine chemerin is the endogenous ligand of the chemokine-like receptor 1 (CMKLR1), a member of the family of G protein-coupled receptors (GPCRs). This protein ligand plays an important role in obesity and inflammatory processes. Stable receptor–ligand interactions are highly relevant for its different physiological effects such as the migration of immune cells towards sites of inflammation. Here, we demonstrate that negative charges in the CMKLR1 N terminus are involved in the formation of strong contacts with a specific positively charged patch at the surface of full-length chemerin, which is absent in the short nonapeptide agonist chemerin-9, thus explaining its reduced affinity. Using receptor chimera of G protein-coupled receptor 1 (GPR1) and CMKLR1, we were able to identify the residues of this interaction and its relevance for stable full-length chemerin binding. This could help to develop more potent ligands for the treatment of inflammation-related diseases.  相似文献   

16.
Statins are a class of drugs used to lower low-density lipoprotein cholesterol and are amongst the most prescribed medications worldwide. Most statins work as a competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), but statin intolerance from pleiotropic effects have been proposed to arise from non-specific binding due to poor enzyme-ligand sensitivity. Yet, research into the physicochemical properties of statins, and their interactions with off-target sites, has not progressed much over the past few decades. Here, we present a concise perspective on the role of statins in lowering serum cholesterol levels, and how their reported interactions with phospholipid membranes offer a crucial insight into the mechanism of some of the more commonly observed pleiotropic effects of statin administration. Lipophilicity, which governs hepatoselectivity, is directly related to the molecular structure of statins, which dictates interaction with and transport through membranes. The structure of statins is therefore a clinically important consideration in the treatment of hypercholesterolaemia. This review integrates the recent biophysical studies of statins with the literature on the physiological effects and provides new insights into the mechanistic cause of statin pleiotropy, and prospective means of understanding the cholesterol-independent effects of statins.  相似文献   

17.
Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.  相似文献   

18.
Yoda T  Vestergaard MC  Hamada T  Le PT  Takagi M 《Lipids》2012,47(8):813-820
Membrane structural organization is an intrinsic property of a cell membrane. Any changes in lipid composition, and/or any stimuli that affect molecular packing induce structural re-organization. It membrane dynamics provide a means by which changes in structure organization can be determined, upon a change in the membrane internal or external environment. Here, we report on the effect of thermo-stress on membranes containing cholesterol liquid crystal (LC) compounds cholesterol benzoate (BENZO) and oxidized cholesterols. We have (1) revealed that lipid vesicles containing this artificial cholesterol derivative (BENZO) is thermo-responsive, and that this thermo-sensitivity is significantly similar to naturally oxy-cholesterols (2) elucidated the mechanism behind the membrane perturbation. Using Langmuir monolayer experiments, we have demonstrated that membrane perturbation was due to an increase in the molecular surface area, (3) discussed the similarities between cholesterol benzoate in the cholesterol LC state and in lipid bilayer membranes. Last, (4) drawing from previously reported findings, our new data on membrane dynamics, and the discussion above, we propose that artificial cholesterol derivatives such as BENZO, open new possibilities for controlled and tailored design using model membrane systems. Examples could include the development of membrane technology and provide a trigger for progress in thermo-tropical liquid crystal engineering.  相似文献   

19.
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.  相似文献   

20.
G protein-coupled receptors (GPCRs) form a large protein family that plays an important role in many physiological and pathophysiological processes. However, the central role that the biogenic amine binding GPCRs and their ligands play in cell signaling poses a risk in new drug candidates that reveal side affinities towards these receptor sites. These candidates have the potential to interfere with the physiological signaling processes and to cause undesired effects in preclinical or clinical studies. Here, we present 3D cross-chemotype pharmacophore models for three biogenic amine antitargets: the alpha(1A) adrenergic, the 5-HT(2A) serotonin, and the D2 dopamine receptors. These pharmacophores describe the key chemical features present within these biogenic amine antagonists and rationalize the biogenic amine side affinities found for numerous new drug candidates. First applications of the alpha(1A) adrenergic receptor model reveal that these in silico tools can be used to guide the chemical optimization towards development candidates with fewer alpha(1A)-mediated side effects (for example, orthostatic hypotension) and, thus, with an improved clinical safety profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号