首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作为“双碳”战略目标的关键载体,含高比例新能源的电力系统具有惯量水平低、调频能力差、抗扰性能弱等特征,对频率稳定带来了全新挑战,迫切需要深入认识能源转型背景下的频率稳定形态。该文按照“建模分析—稳定评估—调频控制”的路线,归纳近年来国内外关于频率稳定的研究及其应用进展。首先,梳理现有频率稳定定义的特点,将其引申为考虑暂态频率安全的广义频率稳定概念,分析含高比例新能源电力系统的频率响应过程;按照系统全局频率和网络节点频率两个视角分析现有特性建模与分析方法,分别总结频率稳定性、频率安全性的评估方法与评估指标,初步建立考虑频率时空分布特性的节点频率安全性指标;列举并归类源网荷储多主体参与系统调频的控制策略,分析相关频率调控措施的特点;最后,结合现有研究进展,对含高比例新能源的电力系统在频率响应特性建模、频率稳定机理评估以及频率稳定协调控制方面的未来发展方向和研究趋势进行展望。  相似文献   

2.
大规模新能源并网导致系统惯量降低,对新能源调频能力提出需求,新能源附加频率控制在为电网提供频率支撑的同时,也可能对系统的稳定运行带来挑战。该文从新能源电力系统稳定分类出发,聚焦频率稳定与小扰动同步稳定性问题,归纳总结低频段频率振荡、同步机功角振荡、锁相环相角振荡及振荡耦合的特征、机理、模型及影响因素。在此基础上,分析了新能源调频特性,深入探讨了附加惯性控制、一次调频控制以及调频响应延时参数等对几类振荡问题的影响机理与趋势,以系统性认识跟网型新能源附加频率控制与同步机机电动态及变流器不同控制环节的交互影响作用。最后,对相关技术方向进行展望,希望能够为新能源参与调频相关参数设计及高比例新能源系统稳定运行提供参考和支撑。  相似文献   

3.
大容量直流和高比例新能源接入下,越来越多的电力系统正逐渐演变为低惯量电力系统。低惯量电力系统惯量支撑力度弱、出力不确定性强、频率调节能力和阻尼特性差,致使频率稳定问题日益凸显。为更好地理解电力系统在低惯量运行场景下的频率稳定威胁以及为有效制定应对策略提供参考,对低惯量电力系统频率稳定分析与控制领域的国内外研究进展进行综述与展望。首先,分析低惯量运行场景产生的主要原因及其对频率稳定的潜在影响,并介绍近年来实际电网频率问题的典型案例。进而,对基于时域仿真、数学解析、数据驱动的各类频率稳定分析方法进行阐述。从“源、网、荷、储”多类型有功资源调频能力挖掘、多道防线加强与协调配合等角度给出改善低惯量电力系统频率稳定的控制措施。最后,展望了该领域未来需深入探索的研究方向。  相似文献   

4.
面向高比例电力电子装备接入后的电力系统安全稳定分析需求,首先,梳理了电力电子装备单体建模和集群建模的现状,分析了不同建模方法的技术原理和适用性。其次,介绍了机电暂态、电磁暂态、机电-电磁暂态混合、数模混合等不同仿真技术的原理和应用现状。再次,分析了未来更大规模新能源接入场景的建模和仿真技术挑战。最后,对高比例电力电子电力系统建模及仿真技术的发展趋势进行展望,提出了电源侧和负荷侧精细化建模、大电网全电磁暂态仿真、基于高性能计算的云仿真、多手段协同仿真分析等关键技术研究方向。  相似文献   

5.
高比例新能源并网给电力系统的频率稳定带来了严峻的挑战.相比风光储等并网新能源,火电机组惯量更大,一次调频可挖掘潜力更大.根据机组惯性作用、一次调频、二次调频的不同响应时间尺度,基于多尺度形态学滤波方法对火电机组一次调频负反馈通道的频率信号进行快速分解,通过对各频段信号设置合理的调差系数,实现分频段调频控制,并有效提高机...  相似文献   

6.
含大规模新能源并网电力系统的暂态电压分析与控制已成为业界普遍关注的热点问题。针对该场景下的暂态电压支撑技术发展动态进行系统性综述。首先阐述新能源大规模发展过程中暂态电压问题发生的本质及带来的挑战,探讨了目前场站暂态电压支撑现状及其面临的问题。然后,给出典型单机无功源的电网暂态电压响应特性和控制技术现状,分析了适用于光伏/风电场站暂态电压支撑的聚合建模方法。然后论述了基于自律分散控制的多无功源协调控制思路及实现途径。接着,针对弱电网及直流送出等复杂场景,指出了暂态电压问题的特征及可能的控制手段。最后阐述了新能源电网暂态电压支撑技术需要进一步解决的关键问题,并对未来研究与开发工作进行了展望。  相似文献   

7.
高风电渗透率下的电力系统调频研究综述   总被引:1,自引:0,他引:1       下载免费PDF全文
受环境危机及能源危机影响,全球风电发展迅速,风能发电在一次能源发电中所占比例越来越高。大规模风电接入对电力系统的频率稳定构成了严重威胁。首先介绍部分风电发达国家对风电机组参与电力系统有功功率控制及调频的要求。接着对大规模风电并网对电力系统频率稳定的影响进行分析。从风电机组为电力系统提供惯性支撑、一次调频及综合提供惯性支撑和一次调频三方面进行调研总结。最后对应用大规模储能技术及需求侧管理技术提高高风电渗透率电力系统频率稳定性方法进行综述分析。  相似文献   

8.
随着新能源的持续并网以及特高压交直流互联电网的形成,电力系统暂态频率稳定事件风险增加。在高渗透率新能源场景下,充分挖掘同步发电机组的调频能力成为提升电力系统频率响应能力的重要手段。针对同步机组的调速器参数,文章利用轨迹灵敏度分析影响最大频率偏差的主导参数,进而通过优化主导参数来提高电力系统的暂态稳定性。通过建立主导参数优化问题的数学模型,解析分析了主导参数对最大频率偏差的影响程度,采用灵敏度分析方法,将非线性优化问题转化为线性规划问题,以减少计算量。在此基础上,文章提出了适用于多机系统的调差系数优化方法,最后通过仿真算例验证了方法的有效性。  相似文献   

9.
随着电力系统低碳化转型的进程加速,我国电网正向着以“高比例新能源”和“高比例电力电子设备”为特征的新型电力系统转型。新能源出力的波动和电力电子设备的大规模接入,既显著增加了系统的不平衡功率冲击,又削弱了系统的频率支撑能力,给频率安全带来了严峻挑战。从频率安全的建模、分析和控制3个角度出发,首先介绍了电力系统频率响应的4种模型:全系统详细模型、线性化模型、单机等值模型、人工智能模型。然后对电力系统频率安全指标及其量化评估方法、影响因素进行评述。最后从“源-荷-储”及其协调控制等方面分析了频率安全的控制手段并介绍了频率紧急协调控制系统,并对建模、分析和控制3个方面分别提出展望。  相似文献   

10.
随着电力电子设备比例不断升高,电力系统暂态频率问题日益凸显。针对当前暂态频率安全判定条件不明确、低惯量条件下保证暂态频率安全的控制方法不清晰的问题,该文对暂态频率问题进行梳理,明确暂态频率问题本质,从能量角度出发给出暂态频率安全判定条件,并初步探究了能量视角下的暂态频率控制方法。首先,对暂态频率问题的组成及各部分的历史、本质和主要约束进行溯源,讨论其演变过程;辨析了惯量和一次调频的能量源、响应形式,从能量角度剖析两者的关系及相互作用,给出能量视角的暂态频率安全临界条件;最后讨论了能量视角的惯量能量和调频能量,初步探究了一次调频能量最优调用策略,给出一种暂态频率控制思路。  相似文献   

11.
惯量在维持电力系统暂态稳定中具有重要作用,尤其是由于功率扰动引起的频率稳定问题。为了最大限度地实现“双碳”目标,新型的新能源高占比的电力系统必将成为我国电网建设的主体。然而,由于大规模新能源并网导致的低惯量问题,不仅影响了电力系统频率稳定性,而且也使电网的动态行为更加难以预测。介绍了惯量的基本概念,并分析了近些年由于缺乏足够系统惯量支撑能力而引起的频率波动、切负荷以及停电事故。从惯量的时空分布特性以及新能源高占比电力系统的等效惯量评估两方面对低惯量电力系统的研究方法和研究成果进行归纳梳理,给出了提升惯量支撑能力的措施和今后研究低惯量电力系统的建议。  相似文献   

12.
参与系统调频的风电机组控制策略研究综述   总被引:1,自引:0,他引:1  
电力系统频率是衡量电力系统电能质量的重要指标,风电机组自身运行特性导致大规模风电并网对系统频率稳定产生极大威胁,风电参与系统调频将成为电力系统未来发展的必然趋势。由于风机本身不具备频率调整的能力,因此风电机组调频控制策略已成为目前风力发电技术的研究热点,为此,在双馈感应风电机组(double fed induction generator,DFIG)正常运行控制基础上,对其参与系统调频控制策略方面相关研究进行分析和综述,分析了减载(deloading,del)运行参与调频的必要性和最优减载法案,研究虚拟惯性控制、下垂控制、桨距角控制等控制方法及其相互辅助从而达到高效调频的协调控制策略,最后展望了需进一步重点研究的内容:储能技术参与风电场调频的协调控制,风电参与系统调频的经济性分析。  相似文献   

13.
随着“碳达峰·碳中和”战略目标的推进以及新型电力系统建设逐步开展,以风电、光伏为代表的新能源持续快速发展,大规模新能源的强不确定性和随机性对电力系统安全稳定经济运行构成了巨大考验。首先,深入分析了高比例新能源电力系统有功功率与频率控制在实时平衡、调频资源、市场发展、安全防御等方面面临的形势与挑战;其次,介绍了多控制区协同控制、多类型资源有序调用、经济调度与自动发电控制的协调配合、安全事件检测与防御、智能化与新技术5个方面的核心问题和研究进展;最后,围绕多控制主体有功频率控制、海量泛在资源协同控制、辅助服务市场闭环控制、风险防御能力提升、人工智能技术深化应用等重点研究方向进行了探讨和展望。  相似文献   

14.
随着风能的大规模开发与利用,未来电网的风电渗透率将逐渐增高,但是过高的风电渗透率会对系统的安全稳定运行造成一定的影响,尤其反映在频率方面。文章结合国内外的研究现状,分析了大规模风电接入对系统频率产生的影响,并从风电机组自身的调频控制技术(虚拟惯量控制、转子超速控制、桨距角控制)及目前新兴的储能技术两个方面介绍高风电渗透率系统下所采用的调频方法。分析了各种调频方法的原理,并对每种控制策略的优缺点及适用范围进行总结。最后对风电参与系统调频的未来研究方向以及储能技术在电力系统中的应用前景进行了展望。  相似文献   

15.
大规模可再生能源接入将导致注入功率的扰动增大而抑制频率变化的转动惯量减小,给电力系统自动发电控制带来新的问题和挑战。引入新型调频资源和应用先进控制方法是提升频率调节质量和效率的重要手段。首先,分析总结了大规模可再生能源接入对电力系统频率响应性能和调频需求两方面的影响。然后,从新型调频资源参与自动发电控制的可行性、经济性、有效性及控制策略等多个角度,综述了新型调频资源参与自动发电控制的关键问题和研究动态。归纳并讨论了几类先进控制技术应用于自动发电控制中的研究现状和应用前景。最后,对大规模可再生能源接入条件下自动发电控制的研究挑战和方向进行了总结和展望。  相似文献   

16.
在对某F级重型燃机调速系统负荷-频率控制策略、实际调频特性进行试验研究以及对现有电力系统仿真软件PSD-BPA所提供的调速器和原动机相关模型进行适用性分析的基础上,从电网频率安全要求出发,对调频性能满足电网需求的F级燃机建立了适用于国内主流调速系统的仿真模型和参数实测方法,仿真计算结果与试验数据对比表明该模型能够较好地仿真燃机的实际调频性能,随着燃机数量的增加,采用该模型进行电力系统仿真计算将能够较好地模拟燃机真实的负荷-频率特征,对完善电网仿真计算数据基础、电力系统暂态稳定分析、电网控制策略研究和制定电网安全预警控制措施等都将起到重要的作用。  相似文献   

17.
全球范围内的能源变革加快了新能源电力系统的发展,大量以电力电子为并网接口的新能源装备逐步成为电力系统的主体。与传统同步发电机组不同,新能源装备的动态行为主要由控制策略决定,大规模新能源接入将全面深刻改变电力系统的动态特性。该文关注新能源装备接入所引发的电力系统暂态同步稳定问题,从装备和系统两个层面展开综述。在装备层面,从静态失稳和动态失稳两方面分析了新能源装备的暂态同步稳定性,总结了跟网型和构网型同步控制这两类策略的分析方法、失稳机理和致稳方法;在系统层面,讨论了不同发电组成的新能源电力系统中的多机动态交互现象和由此引发的同步失稳机理;最后,总结了现有研究的主要结论,针对在稳定性分类、分析方法、控制方法和系统层面的稳定性研究存在的不足,展望了新能源电力系统暂态同步稳定研究未来可能的发展方向。  相似文献   

18.
在分析输配电线路频率相关参数时,将频率固定为额定值的时域仿真法是电力系统暂态频率稳定分析的常用方法。然而,随着新能源比例不断提升,电网各节点频率时空分布差异更为显著,已有传统数值微分频率分析方法难以保证分析精度。因此,文中提出一种基于分频器理论的新型电力系统暂态频率分析方法。与传统频率分析方法相比,该方法所得节点频率可随节点间电气距离变化而改变,在暂态过程中可更准确地刻画瞬态条件,实现各节点实时频率准确获取。通过建立简单含风电的三端系统,分析了基于分频器理论的实现方式,通过仿真验证了所提方法的正确性和优越性,可为新型电力系统频率稳定分析和控制设计提供新的思路和参考方案。  相似文献   

19.
环境污染、气候变化、能源安全和可持续发展等问题日益突出,全球主要国家已将新能源列入国家能源优先发展战略,高比例新能源发展面临重大机遇与挑战。在介绍了国内外新能源发展的背景和现状的基础上,分析了中国大规模新能源发展的主要特点,以甘肃为例,研究高比例新能源接入电力系统发展的机遇,分析了面临的送出、消纳、系统稳定、运行控制、经济性和效率等一系列挑战,展望了高比例新能源发展趋势并提出了应对措施。  相似文献   

20.
针对含规模化风电接入的交直流电力系统的频率稳定问题,以抑制风电出力大幅度随机扰动引起的频率波动为目的,研究高压直流输电(HVDC)自抗扰控制(ADRC)算法策略。该策略在风电出力发生大幅度随机扰动时,HVDC附加频率控制(AFC)作为电力系统一次调频控制;基于自抗扰控制算法的自动发电控制(AGC)作为电力系统二次调频控制;基于风力发电调频技术惯性响应控制为电力系统提供合适的等效惯量,快速响应系统频率的暂态变化。最后,利用Matlab/Simulnk在改造的四机两区域模型中进行了仿真分析,结果表明所研究策略充分利用了交直流电力系统的频率调节能力,能较好地抑制风电出力引起的频率波动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号