首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The optical emission of non-polar GaN/AlN quantum dots has been investigated. The presence of stacking faults inside these quantum dots is evidenced in the dependence of the photoluminescence with temperature and excitation power. A theoretical model for the electronic structure and optical properties of non-polar quantum dots, taking into account their realistic shapes, is presented which predicts a substantial reduction of the internal electric field but a persisting quantum confined Stark effect, comparable to that of polar GaN/AlN quantum dots. Modeling the effect of a 3 monolayer stacking fault inside the quantum dot, which acts as zinc-blende inclusion into the wurtzite matrix, results in an additional 30% reduction of the internal electric field and gives a better account of the observed optical features.  相似文献   

2.
General properties of III-V nitride-based quantum dots (QDs) are presented, with a special emphasis on InGaN/GaN QDs for visible optoelectronic devices. Stranski-Krastanov GaN/AlN dots are first discussed as a prototypical system. It is shown that the optical transition energies are governed by a giant quantum-confined Stark effect, which is the consequence of the presence of a large built-in internal electric field of several MV/cm. Then we move to InGaN/GaN QDs, reviewing the different fabrication approaches and their main optical properties. In particular, we focus on InGaN dots that are formed spontaneously by In composition fluctuations in InGaN quantum wells. Finally, some advantages and limitations of nitride laser diodes with active regions based on InGaN QDs are discussed, pointing out the requirements on dot uniformity and density in order to be able to exploit the expected quantum confinement effects in future devices.  相似文献   

3.
The carrier recombination dynamics in an ensemble of GaN/AlN quantum dots is studied. The model proposed for describing this dynamics takes into account the transition of carriers between quantum dots and defects in a matrix. Comparison of the experimental and calculated photoluminescence decay curves shows that the interaction between quantum dots and defects slows down photoluminescence decay in the ensemble of GaN/AlN quantum dots.  相似文献   

4.
在有效质量和偶极矩近似下,考虑了由于压电极化和自发极化所引起的内建电场和量子点的三维约束效应,对纤锌矿对称Al_xGa_(1-x)N/GaN/Al_xGa_(1-x)N/GaN/Al_xGa_(1-x)N圆柱型应变耦合量子点中激子非线性光学性质进行了研究。计算结果表明,内建电场使吸收光谱向低能方向移动,发生红移现象,并且使吸收峰强度大大减小。量子限制效应使光吸收峰强度随着量子点尺寸的减小而增强,并且随着量子点尺寸的减小,吸收光谱发生蓝移现象。  相似文献   

5.
The influence of defects in the AlN barrier on photoluminescence decay after pulse excitation is studied for structures with GaN quantum dots in an AlN matrix. For these quantum-dot structures, it is found that the initial part of the decay curves corresponds to fast photoluminescence decay. Comparison of the photoluminescence-decay curves for the GaN/AlN quantum-dot structures and AlN layers without quantum dots shows that fast decay is defined by the contribution of the photoluminescence band related to defects in the AlN matrix.  相似文献   

6.
《Microelectronics Journal》2002,33(7):583-588
We report on the optical properties and carrier kinetics of a set of InAs self-assembled quantum dots on (N11)A/B GaAs substrates by means of cw and time-resolved PL. The cw-PL spectra show a blue shift of the PL band on different (N11) QD structures when increasing the carrier photoinjection. This is attributed to a photoinduced screening of the quantum confined Stark shift of the QD optical transition due to a large built-in electric field. The presence of an internal electric field also induces intrinsic optical non-linearity in time-resolved measurements. The analysis of the recombination kinetics shows that the carrier screening occurs inside the QDs, thus demonstrating the intrinsic nature of the built-in field. The dependence of the internal field on the substrate orientation and termination agrees with the presence of piezoelectric field and permanent dipole moment inside the QDs.  相似文献   

7.
Molecular beam epitaxy (MBE) of cubic group-III nitrides is a direct way to eliminate the polarization effects which inherently limits the performance of optoelectronic devices containing quantum well or quantum dot active regions. In this contribution the latest achievement in the MBE of phase-pure cubic GaN, AlN, InN and their alloys will be reviewed. A new reflected high-energy electron beam (RHEED) control technique enables to carefully adjust stoichiometry and to severely reduce the surface roughness, which is important for any hetero-interface. The structural, optical and electrical properties of cubic nitrides and AlGaN/GaN will be presented. We show that no polarization field exists in cubic nitrides and demonstrate 1.55 μm intersubband absorption in cubic AlN/GaN superlattices. Further the progress towards the development and fabrication of cubic hetero-junction field effect transistors (HFETs) is discussed.  相似文献   

8.
采用密度矩阵方法,考察了带强内建电场GaN-基阶梯量子阱中的线性与非线性光吸收系数.基于能量依赖的有效质量方法,在考虑了带的非抛物性情况下,推导了结构中的精确解析的电子本征态,给出了系统中简单解析的线性与非线性光吸收系数表达式.以AlN/GaN/AlxGa1-xN/AlN阶梯量子阱为例进行了数值计算.结果发现阶梯量子阱的阱宽Lw、阶梯垒宽Lb、阶梯垒的掺杂浓度x的减小将提高体系的吸收系数.而且,随着Lw,Lb和x减小,吸收光子的能量有明显的蓝移,总吸收系数的半宽度及饱和吸收强度均减小.计算获得的部分结果与最近的实验观察完全一致.  相似文献   

9.
《Microelectronics Journal》1999,30(4-5):353-356
We observe in strained GaN self-assembled quantum dots grown on an AlN layer, a dramatic modification of the optical emission spectra as the dot size varies. In “large” quantum dots with an average height of 4.1 nm, the photoluminescence (PL) peak is centered at 2.95 eV, nearly 0.5 eV below the bulk GaN bandgap. We attribute this enormous redshift to a giant 5.5 MV cm−1 piezoelectric field present in our dots. Temperature-dependent PL studies reveal the strongly zero-dimensional character of this QD system and are consistent with an intrinsic PL mechanism.  相似文献   

10.
Spontaneous and piezoelectric polarization in hexagonal GaN/AlGaN heterostructures give rise to large built-in electric fields. The effect of the builtin electric field in GaN/AlxGa1−xN quantum wells was investigated for x=0.2 to 0.8 by photoluminescence studies. The quantum well structures were grown by molecular beam epitaxy on (0001) sapphire substrates. Cross-sectional transmission electron microscopy performed on the samples revealed abrupt interfaces and uniform layer thicknesses. The low temperature (4 K) photoluminescence peaks were progressively red-shifted due to the quantum confined Stark effect depending on the AlN mole fraction in the barriers and the thickness of the GaN quantum well. Our results verify the existence of very large built-in electric fields of up to 5 MV/cm in GaN/Al0.8Ga0.2N quantum wells.  相似文献   

11.
从Ⅲ-Ⅴ族氮化物半导体压电极化对应变的依赖关系出发,采用有限元方法计算了GaN/AlN量子点结构中的应变分布,研究了其自发极化、压电极化以及极化电荷密度.结果表明,应变导致的压电极化和Ⅲ-Ⅴ族氮化物半导体所特有的自发极化将导致电荷分布的变化,使电子聚集在量子点顶部,空穴聚集在量子点下面的湿润层中,在量子点结构中产生显著的极化电场,并讨论了电场的存在对能带带边的形状以及能级分布的影响.  相似文献   

12.
内建电场对GaN/AlGaN单量子点发光性质的影响   总被引:1,自引:0,他引:1  
在有效质量近似和变分原理的基础上,考虑量子点的三维约束效应,研究了GaN/AlGaN单量子点发光性质随量子点结构参数(量子点高度L和量子点半径R)的变化。结果表明:内建电场对GaN/AlGaN单量子点的发光波长和激子基态振子强度等发光性质有重要的影响;量子点高度的变化对量子点发光性质的影响要比量子点半径的变化对量子点发光性质的影响更明显。  相似文献   

13.
从Ⅲ-Ⅴ族氮化物半导体压电极化对应变的依赖关系出发,采用有限元方法计算了GaN/AIN量子点结构中的应变分布,研究了其自发极化、压电极化以及极化电荷密度.结果表明,应变导致的压电极化和Ⅲ-Ⅴ族氮化物半导体所特有的自发极化将导致电荷分布的变化,使电子聚集在量子点顶部,空穴聚集在量子点下面的湿润层中,在量子点结构中产生显著的极化电场,并讨论了电场的存在对能带带边的形状以及能级分布的影响.  相似文献   

14.
内建电场对GaN/A1GaN单量子点发光性质的影响   总被引:2,自引:2,他引:0  
在有效质量近似和变分原理的基础上,考虑量子点的三维约束效应,研究了GaN/A1GaN单量子点发光性质随量子点结构参数(量子点高度L和量子点半径R)的变化。结果表明:内建电场对GaN/A1GaN单量子点的发光波长和激子基态振子强度等发光性质有重要的影响;量子点高度的变化对量子点发光性质的影响要比量子点半径的变化对量子点发光性质的影响更明显。  相似文献   

15.
A low-temperature micro-photoluminescence (μ-PL) investigation of InAs/GaAs quantum dots (QDs) exposed to a lateral external electric field is reported. It is demonstrated that the QDs PL signal could be increased several times by altering the external and/or the internal electric field. The internal field in the vicinity of the dots could be altered by means of an additional infra-red laser. We propose a model, which is based on an essentially faster lateral transport of the charge carriers achieved in an external electric field. Consequently, also the capture probability into the dots and subsequently the dot luminescence is also enhanced. The results obtained suggest that the lateral electric fields play a major role for the dot luminescence intensity measured in our experiment.  相似文献   

16.
The AlN/GaN/AlN heterostructures were successfully grown on silicon substrate by plasma-assisted molecular beam epitaxy (MBE). High purity gallium (7N) and aluminum (6N5) were used to grow GaN and AlN, respectively. The structural and optical properties of the samples have been investigated by high-resolution X-ray diffraction (HR-XRD), photoluminescence (PL), Raman spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), dark field scanning transmission electron microscopy (DF STEM), and high-angle annular dark field scanning transmission electron microscopy (HAADF STEM). HR-XRD measurement showed that the sample has a typical diffraction pattern of hexagonal AlN/GaN/AlN heterostructures. Raman spectra revealed all four Raman-active modes, i.e., GaN-like E2 (H), AlN-like A1 (TO), AlN-like E2 (H), and AlN-like A1 (LO) inside the AlN/GaN/AlN heterostructures. Good thickness uniformity of the layers and high-quality hetero-structures without cracking were confirmed by TEM, SAED, DF STEM and HAADF STEM. The fabricated AlN/GaN/AlN heterostructures based metal-semiconductor-metal (MSM) for the UV photodetector shows a rise and fall of photoresponses, suggesting that the AlN/GaN/AlN heterostructures have good carrier transport and crystallinity properties.  相似文献   

17.
The importance of fully coupled and semi-coupled piezoelectric models for quantum dots are compared. Differences in the strain of around 30% and in the electron energies of up to 30 meV were found possible for GaN/AlN dots.  相似文献   

18.
A scheme to generate terahertz radiation by an array of quantum dots localized at the center of a semiconducting heterostructure is developed. Electrons are injected into the active part due to the source and drain Fermi energy difference induced by a dc electric field. The structure is placed inside a microcavity stimulating the electronic transition in the quantum dots accompanied by the emission of a photon to the cavity mode. This process is optimized using the filters formed by the quantum wells, which facilitate the electron density concentration in a quantum dot. The electromagnetic field radiated by the cavity in the waveguide can be used for a local effect on the charge qubits. The parameters of such a source depend on the working characteristics of the quantum dots and cavity.  相似文献   

19.
The exciton spin alignment is measured in an ensemble of self-organized cubic GaN/AlN quantum dots. By picosecond time-resolved photoluminescence experiments, we show that the exciton linear polarization does not decay with time from 20 to 300 K.  相似文献   

20.
The photovoltaic effect in the semiconductor/electrolyte junction is an effective method for investigation of the energy spectrum of InAs/GaAs heterostructures with self-assembled quantum dots. An important advantage of this method is its high sensitivity. This makes it possible to obtain photoelectric spectra from quantum dots with high barriers for the electron and hole emission from quantum dots into the matrix even if the surface density of the dots is low (~109 cm?2). In a strong transverse electric field, broadening of the lines of optical transitions and emission of electrons and holes from quantum dots into the matrix directly from the excited states are observed. The effect of the photovoltage sign reversal was detected for a sufficiently high positive bias across the barrier within the semiconductor. This effect is related to the formation of a positive charge at the interface between the cap layer and electrolyte and of the negative charge on impurities and defects in the quantum dot layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号