首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
In recent years, the capabilities and roles of Unmanned Aerial Vehicles (UAVs) have rapidly evolved, and their usage in military and civilian areas is extremely popular as a result of the advances in technology of robotic systems such as processors, sensors, communications, and networking technologies. While this technology is progressing, development and maintenance costs of UAVs are decreasing relatively. The focus is changing from use of one large UAV to use of multiple UAVs, which are integrated into teams that can coordinate to achieve high-level goals. This level of coordination requires new networking models that can be set up on highly mobile nodes such as UAVs in the fleet. Such networking models allow any two nodes to communicate directly if they are in the communication range, or indirectly through a number of relay nodes such as UAVs. Setting up an ad-hoc network between flying UAVs is a challenging issue, and requirements can differ from traditional networks, Mobile Ad-hoc Networks (MANETs) and Vehicular Ad-hoc Networks (VANETs) in terms of node mobility, connectivity, message routing, service quality, application areas, etc. This paper identifies the challenges with using UAVs as relay nodes in an ad-hoc manner, introduces network models of UAVs, and depicts open research issues with analyzing opportunities and future work.  相似文献   

2.
This paper describes the COMETS (Real-Time Coordination and Control of Multiple Heterogeneous Unmanned Aerial Vehicles) Project, which is aimed at designing and implementing a system for cooperative activities using heterogeneous UAVs. Heterogeneity is considered both in terms of aerial vehicles and onboard processing capabilities ranging from fully autonomous systems to conventional remotely piloted vehicles. COMETS also involves cooperative environmental perception including fire detection and monitoring as well as terrain mapping.  相似文献   

3.
The wireless sensor network (WSN) technology have been evolving very quickly in recent years. Sensors are constantly increasing in sensing, processing, storage, and communication capabilities. In many WSNs that are used in environmental, commercial and military applications, the sensors are lined linearly due to the linear nature of the structure or area that is being monitored making a special class of these networks; We defined these in a previous paper as Linear Sensor Networks (LSNs), and provided a classification of the different types of LSNs. A pure multihop approach to route the data all the way along the linear network (e.g. oil, gas and water pipeline monitoring, border monitoring, road-side monitoring, etc.), which can extend for hundreds or even thousands of kilometers can be very costly from an energy dissipation point of view. In order to significantly reduce the energy consumption used in data transmission and extend the network lifetime, we present a framework for monitoring linear infrastructures using LSNs where data collection and transmission is done using Unmanned Aerial Vehicles (UAVs). The system defines four types of nodes, which include: sensor nodes (SNs), relay nodes (RNs), UAVs, and sinks. The SNs use a classic WSN multihop routing approach to transmit their data to the nearest RN, which acts as a cluster head for its surrounding SNs. Then, a UAV moves back and forth along the linear network and transport the data that is collected by the RNs to the sinks located at both ends of the LSN. We name this network architecture a UAV-based LSNs (ULSNs). This approach leads to considerable savings in node energy consumption, due to a significant reduction of the transmission ranges of the SN and RN nodes and the use of a one-hop transmission to communicate the data from the RNs to the UAV. Furthermore, the strategy provides for reduced interference between the RNs that can be caused by hidden terminal and collision problems, that would be expected if a pure multihop approach is used at the RN level. In addition, three different UAV movement approaches are presented, simulated, and analyzed in order to measure system performance under various network conditions.  相似文献   

4.
潘海珠 《计算机仿真》2012,29(5):98-102,218
研究四旋翼(Quadrotor)无人机导航控制问题。针对传统的四旋翼无人机导航控制方法的目标定位误差和实时性差问题,提出了基于CLOS技术的导航控制方法。采用CLOS技术所开发的导航控制系统使得四旋翼无人机能够在移动停机坪完成自主导航和着陆的任务,并详细研究了导航控制系统的设计和仿真。仿真结果显示了所设计的导航控制系统的性能和有效性,可应用于四旋翼无人机的实时导航。  相似文献   

5.
Aerial photographs and images are used by a variety of industries, including farming, landscaping, surveying, and agriculture, as well as academic researchers including archaeologists and geologists. Aerial imagery can provide a valuable resource for analyzing sites of interest and gaining information about the structure, layout, and composition of large areas of land that would be unavailable otherwise. Current methods of acquiring aerial images rely on techniques such as satellite imagery, manned aircraft, or more recently unmanned aerial vehicles (UAVs) and micro‐UAV technologies. These solutions, while accurate and reliable, have several drawbacks. Using satellite imagery or UAVs can prove to be very expensive, costing tens of thousands for images. They can also prove to be time‐consuming and in some cases have constraints on use, such as no‐fly zones. In this paper, we present an alternative low‐cost, versatile solution to these methods, an intelligent kite aerial photography platform (iKAPP), for the purpose of acquiring aerial images and monitoring sites of interest. We show how this system provides flexibility in application, and we detail the system's design, mechanical operation, and initial flight experiments for a low‐cost, lightweight, intelligent platform capable of acquiring high‐resolution images. Finally, we demonstrate the system by acquiring images of a local site, showing how the system functions and the quality of images it can capture. The application of the system and its capabilities in terms of capture rates, image quality, and limitations are also presented. The system offers several improvements over traditional KAP systems, including onboard “intelligent” processing and communications. The intelligent aspect of this system stems from the use of self‐image stabilization of the camera, the advantage being that one is able to configure the system to capture large areas of a site automatically, and one can see the site acquisition in real time, all of which are not possible with previous methods of AP. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
See-and-avoid behaviors are an essential part of autonomous navigation for Unmanned Air Vehicles (UAVs). To be fully autonomous, a UAV must be able to navigate complex urban and near-earth environments and detect and avoid imminent collisions. While there have been significant research efforts in robotic navigation and obstacle avoidance during the past few years, this previous work has not focused on applications that use small autonomous UAVs. Specific UAV requirements such as non-invasive sensing, light payload, low image quality, high processing speed, long range detection, and low power consumption, etc., must be met in order to fully use this new technology. This paper presents single camera collision detection and avoidance algorithm. Whereas most algorithms attempt to extract the 3D information from a single optical flow value at each feature point, we propose to calculate a set of likely optical flow values and their associated probabilities—an optical flow probability distribution. Using this probability distribution, a more robust method for calculating object distance is developed. This method is developed for use on a UAV to detect obstacles, but it can be used on any vehicle where obstacle detection is needed.  相似文献   

7.
The System Wide Information Management (SWIM) approach has been conceived to overcome the capacity and flexibility limitations of the current ATM systems. On the other hand the commercial applications of Unmanned Aerial Vehicles (UAVs) require the integration of these vehicles in the ATM. From this perspective, the unavoidable modernization of the ATM is seen as an opportunity to integrate the UAVs with the rest of the air traffic. This paper is devoted to study the feasibility and impact of the aggregation of UAVs on the future ATM supported by a SWIM inspired architecture. Departing from the existing technical documents that describe the fundamentals of SWIM we have explored the compatibility with a potential UAVs integration and also explored how the UAVs could help to improve the future ATM system. We will use the weather application as an example in both cases.  相似文献   

8.
In recent years, Unmanned Air Vehicles (UAVs) have become more and more important. These vehicles are employed in many applications from military operations to civilian tasks. Under situations where global positioning system (GPS) and inertial navigation system (INS) do not function, or as an additional sensor, computer vision can be used. Having 360° view, catadioptric cameras might be very useful as they can be used as measurement units, obstacle avoidance sensors or navigation planners. Although many innovative research has been done about this camera, employment of such cameras in UAVs is very new. In this paper, we present the use of catadioptric systems in UAVs to estimate vehicle attitude using parallel lines that exist on many structures in an urban environment. After explanation of the algorithm, the UAV modeling and control will be presented. In order to increase the estimation and control speed an Extended Kalman Filter (EKF) and multi-threading are used and speeds up to 40 fps are obtained. Various simulations have been done to present the effectiveness of the estimation algorithms as well as the UAV controllers. A custom test stand has been designed to perform successful experiments on the UAV. Finally, we will present the experiments and the results of the estimation and control algorithms on a real model helicopter. EKF based attitude estimation and stabilization using catadioptric images has found to be a reliable alternative to other sensor usage.  相似文献   

9.
We will in this paper address the problem of offline path planning for Unmanned Aerial Vehicles (UAVs). Our goal is to find paths that meet mission objectives, are safe with respect to collision and grounding, fuel efficient and satisfy criteria for communication. Due to the many nonconvex constraints of the problem, Mixed Integer Linear Programming (MILP) will be used in finding the path. Approximate communication constraints and terrain avoidance constraints are used in the MILP formulation. To achieve more accurate prediction of the ability to communicate, the path is then analyzed in the radio propagation toolbox SPLAT!, and if the UAVs are not able to communicate according to design criteria for bandwidth, constraints are modified in the optimization problem in an iterative manner. The approach is exemplified with the following setup: The path of two UAVs are planned so they can serve as relay nodes between a target without line of sight to the base station.  相似文献   

10.
The use of Unmanned Aerial Vehicles (UAVs) is growing significantly for many and varied purposes. During the mission, an outdoor UAV is guided by following the planned path using GPS signals. However, the GPS capability may become defective or the environment may be GPS-denied, and an additional safety aid is therefore required for the automatic landing phase that is independent of GPS data. Most UAVs are equipped with machine vision systems which, together with onboard analysis, can be used for safe, automatic landing. This contributes greatly to the overall success of autonomous flight.This paper proposes an automatic expert system, based on image segmentation procedures, that assists safe landing through recognition and relative orientation of the UAV and platform. The proposed expert system exploits the human experience that has been incorporated into the machine vision system, which is mapped into the proposed image processing modules. The result is an improved reliability capability that could be incorporated into any UAV, and is especially robust for rotary wing UAVs. This is clearly a desirable fail-safe capability.  相似文献   

11.
Autonomous Unmanned Aerial Vehicles (UAVs) operate under uncertain environmental conditions and can have to face unexpected obstacles, weather changes and sensor or hardware/software component failures. In such situations, the UAV must be able to detect and locate the failure and to take adequate recovery actions. In this paper, we focus on the Health Management of the system depending on the context of the mission. The task of this Health Management is to monitor the status of the system components based on observations from sensors and appearance contexts, and it is designed by means of Bayesian Networks arising from the Failure Mode and Effects Analysis. We jointly introduce a framework to generate embedded software and hardware implementations for online and real-time observations, which are demonstrated on a Hybrid CPU/FPGA Zynq platform.  相似文献   

12.
The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs.  相似文献   

13.
A Framework for Simulation and Testing of UAVs in Cooperative Scenarios   总被引:1,自引:0,他引:1  
Today, Unmanned Aerial Vehicles (UAVs) have deeply modified the concepts of surveillance, Search&Rescue, aerial photogrammetry, mapping, etc. The kinds of missions grow continuously; missions are in most cases performed by a fleet of cooperating autonomous and heterogeneous vehicles. These systems are really complex and it becomes fundamental to simulate any mission stage to exploit benefits of simulations like repeatability, modularity and low cost. In this paper a framework for simulation and testing of UAVs in cooperative scenarios is presented. The framework, based on modularity and stratification in different specialized layers, allows an easy switching from simulated to real environments, thus reducing testing and debugging times, especially in a training context. Results obtained using the proposed framework on some test cases are also reported.  相似文献   

14.
Fixed-wing Unmanned Aerial Vehicles (UAVs) are a class of UAVs which present many advantages notably long range of action. However, design of this kind of UAVs requires heavy logistics like outdoor tests, runways and experimented pilots. These constraints impact the development of embedded systems for fixed-wing UAVs. The purpose of this paper is to present an experimental approach for evaluating an embedded sensors system of a micro-fixed-wing UAV. Our idea is to test the sensors system using a vehicle that emulate the behavior of this UAV but without the constraints imposed by flight experimentations. Looking for the best emulation vehicle, first a theoretical and then an experimental study is conducted on a mobile robot and a bicycle models. We also show that, contrary to trend in literature, a mobile robot is not the optimal choice to emulate a fixed-wing UAV.  相似文献   

15.
宋敏  魏瑞轩  李霞 《计算机工程》2009,35(24):23-25
研究多无人机任务推演系统的设计与实现过程,在多无人机任务推演系统具体需求的基础上,设计系统的分层体系结构与具体功能模块。针对系统实现过程中的多机协同任务分配及航迹规划问题,建立相应的数学模型并使用改进遗传算法对模型进行求解。使用分布式处理技术解决模型解算与实时数据显示的矛盾。基于MapX控件实现系统中战场地图的显示与操作功能。该系统对制定合理作战方案、发挥无人机的最佳作战效能具有重要意义。  相似文献   

16.
In recent years, since researchers began to study on Unmanned Aerial Vehicles (UAVs), UAVs have been integrated into today's everyday life, including civilian area and military area. Many researchers have tried to make use of UAVs as an ideal platform for inspection, delivery, surveillance, and so on. In particular, machine learning has been applied to UAVs for autonomous flight that enables UAVs do designated task more efficiently. In this paper, we review the history and the classification of machine learning, and discuss the state-of-the-art machine learning that has been applied to UAVs for autonomous flight. We provide control strategies including parameter tuning, adaptive control for uncertain environment, and real-time path planning, and object recognition that have been described in the literature.  相似文献   

17.
Multi-UAV Simulator Utilizing X-Plane   总被引:1,自引:0,他引:1  
This paper describes the development of a simulator for multiple Unmanned Aerial Vehicles (UAVs) utilizing the commercially available simulator X-Plane and Matlab. Coordinated control of unmanned systems is currently being researched for a wide range of applications, including search and rescue, convoy protection, and building clearing to name a few. Although coordination and control of Unmanned Ground Vehicles (UGVs) has been a heavily researched area, the extension towards controlling multiple UAVs has seen minimal attention. This lack of development is due to numerous issues including the difficulty in realistically modeling and simulating multiple UAVs. This work attempts to overcome these limitations by creating an environment that can simultaneously simulate multiple air vehicles as well as provide state data and control input for the individual vehicles using a heavily developed and commercially available flight simulator (X-Plane). This framework will allow researchers to study multi-UAV control algorithms using realistic unmanned and manned aircraft models in real-world modeled environments. Validation of the system’s ability is shown through the demonstration of formation control algorithms implemented on four UAV helicopters with formation and navigation controllers built in Matlab/Simulink.  相似文献   

18.
This article presents a novel recovery method for fixed‐wing unmanned aerial vehicles (UAVs), aimed at enabling operations from marine vessels. Instead of using the conventional method of using a fixed net on the ship deck, we propose to suspend a net under two cooperative multirotor UAVs. While keeping their relative formation, the multirotor UAVs are able to intercept the incoming fixed‐wing UAV along a virtual runway over the sea and transport it back to the ship. In addition to discussing the concept and design a control system, this paper also presents experimental validation of the proposed concept for a small‐scale UAV platform.  相似文献   

19.
Great strides have been made to realistically deploy multiple Unmanned Aerial Vehicles (UAVs) within the commercial domain, which demands a proper coordination and reliable communication among the UAVs. UAVs suffer from limited time of flight. Conventional techniques suffer from high delay, low throughput, and early node death due to aerial topology of UAV networks. To deal with these issues, this paper proposes a UAV parameter vector which considers node energy, channel state information and mobility of UAVs. By intelligently estimating the proposed parameter, the state of UAV can be predicted closely. Accordingly, efficient clustering may be achieved by using suitable metaheuristic techniques. In the current work, Elbow method has been used to determine optimal cluster count in the deployed FANET. The proposed UAV parameter vector is then integrated into two popular hybrid metaheuristic algorithms, namely, water cycle-moth flame optimization (WCMFO) and Grey Wolf-Particle Swarm optimization (GWPSO), thereby enhancing the lifespan of the system. A methodology based on the holistic approach of parameter and signal formulation, estimation model for intelligent clustering, and statistical parameters for performance analysis is carried out by the energy consumption of the network and the alive node analysis. Rigorous simulations are run to demonstrate node density variations to validate the theoretical developments for various proportions of network system sizes. The proposed method presents significant improvement over conventional state-of-the-art methods.  相似文献   

20.
The proliferation of Unmanned Aerial Vehicles (UAVs) brings about many new security concerns. A common concern with UAV security is for an intruder to take control of a UAV, which leads for a need for a real time anomaly detection system. This research resulted in a prototype UAV monitoring system that captures flight data, and then performs real time estimation and tracking of the airframe and controller parameters. The aforementioned is done by utilizing the Recursive Least Squares Method (RLSM). Using statistical validation and trend analysis, parameter estimates are critical for the detection of cyber attacks and incipient hardware failures that can invariably jeopardize mission success. The results demonstrate that achieving efficient anomaly detection during flight is possible through the application of statistical methods to profile system behavior. The anomaly detection system that was designed can be performed in real time while the UAV is in flight, constantly verifying its parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号