首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly efficient visible-light-driven AgBr/Ag3PO4 hybrid photocatalysts with different mole ratios of AgBr were prepared via an in-situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgBr/Ag3PO4 photocatalysts displayed the higher photocatalytic activity than pure Ag3PO4 and AgBr for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgBr/Ag3PO4 with 60% of AgBr exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgBr/Ag3PO4 readily transformed to be Ag@AgBr/Ag3PO4 system while the photocatalytic activity of AgBr/Ag3PO4 remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h+ and O2∙− play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgBr/Ag3PO4 hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag3PO4, Ag and AgBr, in which Ag nanoparticles act as the charge separation center.  相似文献   

2.
The g-C3N4 was synthesized by a hydrothermal method and the g-C3N4/Ag3PO4 composites were prepared by a ordinary precipitation method. Microstructures, morphologies and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), UV–vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the Ag3PO4 nanoparticles were dispersed on the surface of the flake-like g-C3N4, and the heterojunction was formed on the interface. The g-C3N4/Ag3PO4 (2 wt%) photocatalyst presented the highest photocatalytic activity for organic dye methylene blue (MB) degradation, and its photocurrent intensity was approximately 2 times than that of the pure Ag3PO4. The g-C3N4/Ag3PO4 (2 wt%) photocatalyst also exhibited photocatalytic performance in the decomposition of colorless antibiotic ciprofloxacin (CIP). The capture experiment confirmed that holes acted as the main active species during the photocatalytic reaction.  相似文献   

3.
The photo-electrochemical properties of the libethenite Cu2(PO4)(OH) were studied to assess the oxidation of orange G (OG) under both solar and artificial lights. The compound was synthesized by hydrothermal route and characterized by X-ray diffraction, scanning electron microscopy, thermal and chemical analyses, UV–vis diffuse reflectance and electrochemical impedance spectroscopy. The libethenite possesses an optical gap of 1.52 eV and exhibits n type semiconducting behavior with an activation energy of 20 meV. On the basis of photo-electrochemical properties, it was concluded that the conduction band of the material (=4.81 eV/+0.30 VRHE) permits the formation of O2·− radicals for the OG oxidation. A maximum elimination of 94% was obtained upon sunlight within 120 min exposure. The injection process of orange G into the conduction band of the libethenite is confirmed by the photocurrent measurements at different concentrations. The decolorization process proceeds like a photo-Fenton reaction, based on copper ions. Referring to the energetic diagram, a degradation mechanism is proposed. Cu2PO4(OH) catalyst permits to activate H2O2 and initiate the decomposition of OG molecules. The OG removal follows a pseudo-first order kinetic with an apparent rate constant of 6.2×10−3 min−1 under sunlight.  相似文献   

4.
Na2MnPO4F is synthesized by hydrothermal route at 453 K and the physical properties and photo-electrochemical characterizations are reported. The compound crystallizes in a monoclinic system (SG: P 21/n) with the lattice constants: a=13.7132 Å, b=5.3461 Å, c=13.7079 Å, β=119.97°. The UV–visible spectroscopy shows an indirect optical transition at 2.68 eV; a further direct transition occurs at 3.70 eV, due to the charge transfer O2−: 2p → Mn2+: eg. The thermal variation of the electrical conductivity is characteristic of a semiconducting behavior with activation energy of 39 meV and an electron mobility (µ318 K=5.56×10−4 cm2 V−1 s−1), thermally activated. The flat band potential (+0.47 VSCE) indicates that the valence band derives mainly from O2−: 2p orbital with a small admixture of F character while the conduction band is made up of Mn2+: t2g orbital. The electrochemical impedance spectroscopy shows the contribution of both the bulk and grains boundaries. The photocatalytic performance of Na2MnPO4F for the degradation of Rhodamine B (RhB) is demonstrated on the basis of the energy diagram. 88% of the initial concentration is degraded under UV light and the oxidation follows a first order kinetic with a rate constant of 0.516 h−1. Neither adsorption nor photolysis is observed. The photoactivity results from the electron transition from the hybridized band (O2−, F) to the Mn2+: eg orbital, occurring in the UV region. The catalyst was subjected to three successive photocatalytic cycles, thus proving its long term stability.  相似文献   

5.
Oxidized activated carbon/Fe3O4 (AC/Fe3O4) composites for supercapacitor electrodes were synthesized by a reduction method. Poly(vinylpyrrolidone) was added as a dispersing agent for homogeneous deposition of Fe3O4 on AC. The obtained products were identified as AC/Fe3O4 by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. Morphological characterization of AC/Fe3O4 was carried out by field emission scanning electron microscopy (FE-SEM); the results clearly showed the formation of Fe3O4 nanoparticles about 30 nm in diameter on AC. Moreover, by using N2 adsorption/desorption isotherm analysis, we confirmed that surface areas and pore volumes decreased with increasing Fe3O4 content. We also carried out electrochemical characterization of AC and AC/Fe3O4 composites. Remarkably, we found that the value of specific capacitance increased significantly from 99.4 F g−1 of raw AC to 202.6 F g−1 of AC/Fe3O4 composites at 10 mV s−1 of scan rate. This result can be ascribed to a synergistic effect of the combination of electrical double-layer capacitance and pseudo-capacitance properties. This research represents a valuable contribution to the application of supercapacitor electrodes in regard to cost effectiveness and simple fabrication.  相似文献   

6.
The new layered niobate Cu0.5Nb3O8 is synthesized by soft chemistry in aqueous electrolyte via Cu2+→H+ exchange between copper nitrate and HNb3O8·H2O. The characterization of the exchanged product is made by means of thermal gravimetry, chemical analysis, X-ray diffraction and IR spectroscopy. Thermal analysis shows a conversion to anhydrous compound above 500 °C. The oxide displays a semiconductor like behavior; the thermal variation of the conductivity shows that d electrons are strongly localized and the conduction is thermally activated with activation energy of 0.13 eV. The temperature dependence of the thermopower is indicative of an extrinsic conductivity; the electrons are dominant carriers in conformity with an anodic photocurrent. Indeed, the Mott–Schottky plot confirms n-type conduction from which a flat band potential of −0.82 VSCE, an electronic density of 8.72×1019 m−3 and a depletion width of 4.4 nm are determined. The upper valence band, located at ~5.8 eV below vacuum is made up predominantly of Cu2+: 3d with a small admixture of O2−: 2p orbitals whereas the conduction band consists of empty Nb5+: 5s level. The energy band diagram shows the feasibility of the oxide for the photocatalytic hydrogen production upon visible light (29 mW cm−2) with a rate evolution of 0.31 mL g−1 min−1.  相似文献   

7.
Sr2Co2O5 is a semiconductor belonging to the brownmillerite family; it is prepared by nitrate route and the photo-electrochemical properties are assessed for the first time for the photocatalytic hydrogen production. Thermal analysis indicates the formation of the semiconductor phase at 750 °C. An optical transition at 1.10 eV, directly allowed is obtained from the diffuse reflectance spectrum, due to the internal Co3+: d-d transition in octahedral coordination. A flat band potential of 0.037 VSCE is determined in KOH solution (0.1 M) from the Mott-Schottky characteristic and the results are relevant for the water reduction. The conduction band of Sr2Co2O5 (−0.85 VSCE), deriving from Co3+: 3d orbital is more cathodic than the potential of H2O/H2 couple and hydrogen is successfully evolved under visible light. A rate evolution of 68 µmol (g catalyst)−1 min−1 at pH ∼ 12 and a light-to-chemical energy efficiency of 0.82% are determined.  相似文献   

8.
Nano-sized plasmonic Ag@AgBr sensitized K2Ti4O9 composite photocatalysts (hereafter designated as Ag@AgBr/K2Ti4O9) was synthesized via a facile oil-in-water self-assembly method. The photocatalytic activity of the prepared materials for methylene blue (MB) degradation was examined under visible light irradiation. The results reveal that the size of Ag@AgBr, which evenly dispersed on the surface of K2Ti4O9, distributes about 20 nm. The UV–vis diffuse reflectance spectra indicate that Ag@AgBr/K2Ti4O9 samples have a significantly enhanced optical absorption in 420–800 nm. The photocatalytic activities of the Ag@AgBr/K2Ti4O9 samples increase first and then decrease with increasing amount of loading Ag@AgBr and the Ag@AgBr(10 wt%)/K2Ti4O9 sample exhibits the best photocatalytic activity and 95.75% MB was degraded after irradiation for 90 min. Additionally, studies performed using radical scavengers indicated that h+, ·OH and Br0 acted as the main reactive species.  相似文献   

9.
《Organic Electronics》2014,15(8):1717-1723
We have investigated the growth behavior and water vapor permeation barrier properties of cyclic chemical vapor deposition (C-CVD)-grown 10-nm-thick single layer of Al2O3. Al2O3 layers grown by C-CVD showed a high density of 3.298 g/cm3 and were amorphous without grain boundaries. A deposition rate of 0.46 nm/cycle was obtained. The C-CVD system was self-limiting, as in the case of atomic layer deposition, which enables precise control of the thickness of the Al2O3 layer. A water vapor transmission rate of 1.51 × 10−5 (g/m2)/day was obtained from a Ca degradation test performed at 85 °C and 85% relative humidity. Moreover, the performance of organic light-emitting diodes, passivated by a C-CVD-grown 10-nm-thick Al2O3 single layer, was not affected after 24,000 h of turn-on time; this is strong evidence that C-CVD-grown Al2O3 layers effectively prevent water vapor from diffusing into the active organic layer.  相似文献   

10.
Thermoelectric delafossite (CuAlO2)1−x(Ag2O)x with 0<x<0.06 is prepared at three different sintering temperatures, 1323 K, 1373 K, and 1473 K. The samples are obtained from a mixture of CuO, Al2O3, and additive Ag2O powders. The mixture is ground and then pressed with uniaxial pressure into pellets. Differential scanning calorimetry and X-ray diffraction spectroscopy show that the sintering temperature to synthesize delafossite CuAlO2 with Ag2O addition is below 1473 K. X-ray diffraction patterns show the major phase of delafossite 3R-CuAlO2 along with a trace amount of 2H-CuAlO2. A small amount of the Ag phase is present in the samples depending on the amount of Ag2O addition and sintering temperature. Energy dispersive spectroscopy and backscattered electron image analyses show that the Ag phase is segregated around the grain boundary. Liquid-phase sintering is used to explain the growth mechanism. The CuAlO2 samples with Ag2O addition obviously exhibit enhanced bulk density, grain size, and electrical conductivity. The highest power factor (PF), obtained by CuAlO2 with 2 at% of Ag2O sintered at 1373 K, is 8.23×10−5 W/(m K2) at 873 K. Hence, our findings show an improvement for delafossite CuAlO2 by Ag2O addition.  相似文献   

11.
《Solid-state electronics》2006,50(7-8):1355-1358
The electrical properties of Cr/Pt/Au and Ni/Au ohmic contacts with unintentionally doped In2O3 (U-In2O3) film and zinc-doped In2O3 (In2O3:Zn) prepared by reactive magnetron sputtering deposition are described. The lowest specific contact resistance of Cr/Pt/Au and Ni/Au is 2.94 × 10−6 and 1.49 × 10−2 Ω-cm2, respectively, as determined by the transmission line model (TLM) after heat treatment at 300 °C by thermal annealing for 10 min in nitrogen ambient. The indium oxide diodes have an ideality factor of 1.1 and a soft breakdown voltage of 5 V. The reverse leakage current prior to breakdown is around 10−5 A.  相似文献   

12.
In the present work, anatase TiO2 films are prepared by sol–gel spin coating method. The structural and optical properties of the films have been studied at different post-annealing temperatures. The photocatalytic activity and electrochromic performance of the films are investigated. The films annealed at 400 °C exhibit the highest photocatalytic activity with a rate constant of 4.56×10−3 min−1. The electrochromic performance for the films annealed at 400 °C expressed in terms of difference in optical density (ΔOD) at 550 nm between coloured and bleached state is 0.5493. This combination of photocatalysis and electrochromism makes the sol–gel derived titania thin films as promising candidates for self-cleaning smart window applications.  相似文献   

13.
Spinel MxMn1−xFe2O4 ferrites (M=Zn or Cd) synthesized via the co-precipitation method were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV–vis and Mössbauer spectroscopy. MnFe2O4 exhibited mainly cubic structure when Cd was incorporated, whereas the Zn incorporation stimulated a mixed phase consisting of MnFe2O4 and ZnMnFe2O4. The IR spectra of both Cd- and Zn modified MnFe2O4 samples revealed vibration of the chemical bond Fe2+O2− in A location of the tetrahedron which infers that dopants were uniformly distributed over the system. The optical band gap energy showed large variations; a smaller value was determined for Cd0.2Mn0.8Fe2O4 (1.46 eV) when compared with those of MnFe2O4 (2.16 eV) and Zn0.2Mn0.8Fe2O4 (2.8 eV). The analysis of Mössbauer spectra gave inversion values of Fe3+ distribution in tetrahedral coordinated sites of 24%, 57% and 65% in MnFe2O4, Zn0.2Mn0.8Fe2O4 and Cd0.2Mn0.8Fe2O4, respectively. It was found that Cd0.2Mn0.8Fe2O4 exhibited the best performance in the photocatalytic reduction of Cr(VI) to Cr(III) having a maximum value of 96% within 30 min, and the experimental data obeyed pseudo-second-order rate kinetic model. Also, the linear model of Langmuir attained a maximum adsorption capacity of 37 mg g−1 for Cd0.2Mn0.8Fe2O4.  相似文献   

14.
Manganese dioxide (MnO2) and CuBi2O4-doped MnO2 thin films with different nanostructures were deposited on indium tin oxide (ITO) glass and Ti foil substrates by using a chemical bath deposition (CBD) technique. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron microscopy (XPS). The effects of doping and substrates on electrochemical properties of MnO2 and CuBi2O4-doped MnO2 thin films on ITO glass and Ti foil were investigated. Capacitive properties of MnO2 and CuBi2O4-doped MnO2 thin films electrodes were studied using cyclic voltammetry and electrochemical impedance spectroscopy in a three-electrode experimental setup using 0.1 M Na2SO4 aqueous solution as electrolyte. Specific capacitance, obtained from electrochemical measurement for the CuBi2O4-doped MnO2, exhibited a higher value of 338 F g−1 compared to the MnO2 exhibiting value of 135 F g−1. In addition, CuBi2O4-doped MnO2 thin films on an ITO electrode had a better and satisfactory specific capacitance value, and exhibited more excellent electrochemical stability and reversibility than Ti foil substrates.  相似文献   

15.
Novel visible-light-driven Ag3PO4@C3N4PO4 loaded with metal Ag were synthesised via an anion-exchange precipitation method and regenerated by H2O2 and NaNH3HPO4. The obtained Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4 were characterised by XRD, XPS, SEM and UV–vis. The XRD and UV–vis results revealed that the crystal structure and light adsorption property of Ag/Ag3PO4@C3N4 were similar to that of regenerated Ag/Ag3PO4@C3N4. The XPS result showed that the metallic Ag0 deposited on the surface of Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4. The Ag/Ag3PO4@C3N4 hybrids displayed remarkable photocatalytic activity and stability after regeneration. Compared with pure Ag3PO4 or C3N4, the Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4 enhancement in the photodegradation rate towards methyl orange is observed over under visible light irradiation. The enhanced photocatalytic performance was attributed to the synergistic effect between Ag3PO4 and C3N4 and a small amount of Ag0 which suppresses the charge recombination during photocatalytic process. This work could provide new insights into the fabrication of high stability visible photocatalysts and facilitate their practical application in environment issues.  相似文献   

16.
We prepared nano-zero-valent iron (nZVI) and N co-modified TiO2 (nZVI/N–TiO2) nanotube arrays as an enhanced visible-light photocatalyst. The TiO2 nanotube arrays were synthesized by electrochemical anodization of Ti foil in a two-electrode system. Amorphous TiO2 nanotube arrays were immersed in ammonia and then annealed to produce crystalline N-doped TiO2 (N–TiO2) nanotube arrays. nZVI spheres were directly deposited on the N–TiO2 nanotube arrays by borohydride reduction. The photocatalysts were characterized by field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), UV–visible diffuse reflectance spectroscopy (UV–vis DRS), and electrochemical impedance spectroscopy (EIS). The environmental applicability and photocatalytic activity of the proposed nZVI/N–TiO2 nanotube arrays were tested by phenol degradation in an aqueous system under UV and visible light irradiation. The phenol degradation rate constants of each sample under visible light irradiation were in the following order: nZVI/N–TiO2 (kobs=0.006 min1)>N–TiO2 (kobs=0.002 min1) ⪢ nZVI/TiO2 (kobs=0.0003 min1)>TiO2 (kobs=0.0001 min1). This result can be attributed to the synergistic effect of the N–TiO2 nanotubes with lower energy band gap and the electron transfer from the conduction band (CB) of N–TiO2 to nZVI spheres highly-dispersed on the N–TiO2 for enhanced separation of photogenerated electrons and holes.  相似文献   

17.
The relationship between the oxygen vacancy of tungsten oxide and its ability to decompose organic materials under visible-light irradiation was investigated experimentally. In the field of rechargeable batteries, the highest charge-discharge rate is obtained when tungsten oxide is used as a negative electrode with an O/W ratio of 2.72. This result suggested that the number of oxygen vacancies in tungsten oxide affects the photocatalytic decomposition behavior of organic materials. Therefore, with the aim of increasing the photocatalytic activity of tungsten oxide to decompose organic materials, we attempted to clarify the role of the oxygen vacancy. WO3  x nanoparticles, including WO2.83 and WO2.72 nanoparticles, were fabricated by changing the annealing temperature in a 10% H2, 90% N2 atmosphere to generate different densities of oxygen vacancies. Tungsten oxide with O/W ratios of 2.83 and 2.72 exhibited no photocatalytic activity for the photodecomposition of organic materials. The maximum decomposition rate was obtained for stoichiometric WO3 (O/W = 3). The reason for the decrease or disappearance of the photodecomposition ability should originate in the increase in the number of electrons generated by the oxygen vacancies. These excess electrons promote the recombination reaction between electrons and holes in WO3  x, and hence reduce the lifetime of electron-hole pairs.  相似文献   

18.
Fe3O4/SiO2/TiO2 nanocomposites with well-defined core-shell structures were successfully prepared by a facile hydrothermal synthetic method for titania coating on Fe3O4/SiO2 magnetic core. The as-prepared Fe3O4/SiO2/TiO2 composite particles were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM),Fourier transform infrared spectroscopy (FT-IR). The results showed that Fe3O4/SiO2/TiO2 was well crystallized at 140 °C with well-defined core-shell structures. Fe3O4/SiO2/TiO2 nanocomposites as well as pure TiO2 showed good photocatalytic performance in the decolorization of methyl orange aqueous solution. Magnetic core coated by SiO2 and TiO2 layer still retained the good magnetic properties (Ms:3.04 emu g-1) to facilitate catalyst recovery using external magnetic field.  相似文献   

19.
The semiconductor Li0.93Cu0.07Nb3O8 is prepared by soft chemistry in aqueous electrolyte via Cu2+ → Li+ exchange between copper nitrate and LiNb3O8. The substituted niobate crystallizes in an orthorhombic symmetry and the semiconducting and photo-electrochemical properties are investigated for the first time. The oxide exhibits a dark brown color and the UV–Visible spectroscopy gives an optical gap of 1.42 eV, due to the crystal field splitting of Cu2+ in octahedral site. The thermal variation of the conductivity shows that Nb: 4d-electrons are localized and the data are fitted by a small-polaron hopping model σ = σo exp {−0.053 eV/kT} with a carrier density thermally activated. The capacitance measurement done in ionic electrolyte (Na2SO4, 10−2 M) indicates n type semiconductor with mixed valences Nb5+/4+, due to the hetero-valent substitution Li+/Cu2+, with a flat band potential of 0.28 VSCE and electrons density of 2.17×1017 cm−3. The Nyquist diagram shows mainly the bulk contribution with a diffusion process. The valence band (6.39 eV below vacuum) derives from O2-: 2p orbital with a small admixture of Cu2+: 3d character while the conduction band is made up of Nb5+: 4d orbital. The material is successfully tested for the oxygen generation with an evolution rate of 87 µmol mn−1 g−1 under visible light (29 mW cm−2) and a quantum yield of 0.35%.  相似文献   

20.
《Organic Electronics》2014,15(9):1936-1941
We report an inorganic/organic hybrid barrier that combines the alternating deposition of a layer of ZrO2 using low temperature atomic layer deposition and a 16-μm-thick layer of UV-curable NOA63 epoxy using spin-coating. The effective water vapor transmission rates of single ZrO2 film was improved by adding solution epoxy from 3.03 × 10−3 g/m2 day to 1.27 × 10−4 g/m2 day in the hybrid NOA63/ZrO2/NOA63/ZrO2 films at 20 °C and a relative humidity of 60%. In consequence, the organic light-emitting diodes encapsulated with inorganic/organic hybrid barriers were undamaged by environmental oxygen and moisture and their luminance decay time improved by a considerable extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号