首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gingival regeneration aims at restoring the architecture and functionality of oral damaged tissue. Different biomaterials or biological materials have been tested for tissue repair, such as platelet concentrates such as PL. In this article, the use of extracellular vesicles (EVs) derived from platelet lysate (PL) and their combination with hyaluronic acid biomaterials (HA) in an in vitro wound healing assay is investigated. EVs were isolated by size exclusion chromatography from PL. In addition, HA gels were formulated with PL or EVs. EVs or HA combined with EVs (HA-EVs) were tested in vitro in gingival fibroblasts and keratinocytes for biocompatibility (LDH activity and metabolic activity) and by an in vitro wound-healing assay and gene expression analysis. EVs and EVs-HA treatments were biocompatible in gingival fibroblasts and keratinocytes and showed an increase in wound healing in vitro compared to control. Moreover, changes in gene expression related to extracellular matrix remodeling were observed after the treatment with EVs. EVs can be combined with HA biomaterials, showing good biocompatibility and preserving their activity and functionality. Therefore, platelet-derived EVs could emerge as a new application for periodontal regeneration in combination with biomaterials in order to enhance their clinical use.  相似文献   

2.
Over two billion people worldwide are exposed to organic dust, which can cause respiratory disorders. The discovery of the cathelicidin peptide provides novel insights into the lung’s response to organic dust; however, its role in the lung’s response to organic dust exposure and chronic lung diseases remains limited. We conducted a scoping review to map the current evidence on the role of cathelicidin LL-37/CRAMP in response to organic dust exposure and related chronic lung diseases: hypersensitivity pneumonitis (HP), chronic obstructive pulmonary disease (COPD) and asthma. We included a total of n = 53 peer-reviewed articles in this review, following the process of (i) a preliminary screening; (ii) a systematic MEDLINE/PubMed database search; (iii) title, abstract and full-text screening; (iv) data extraction and charting. Cathelicidin levels were shown to be altered in all clinical settings investigated; its pleiotropic function was confirmed. It was found that cathelicidin contributes to maintaining homeostasis and participates in lung injury response and repair, in addition to exerting a positive effect against microbial load and infections. In addition, LL-37 was found to sustain continuous inflammation, increase mucus formation and inhibit microorganisms and corticosteroids. In addition, studies investigated cathelicidin as a treatment modality, such as cathelicidin inhalation in experimental HP, which had positive effects. However, the primary focus of the included articles was on LL-37’s antibacterial effect, leading to the conclusion that the beneficial LL-37 activity has not been adequately examined and that further research is required.  相似文献   

3.
The virus responsible for the current COVID-19 pandemic is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a new virus with high infectivity and moderate mortality. The major clinical manifestation of COVID-19 is interstitial pneumonia, which may progress to acute respiratory distress syndrome (ARDS). However, the disease causes a potent systemic hyperin-flammatory response, i.e., a cytokine storm or macrophage activation syndrome (MAS), which is associated with thrombotic complications. The complexity of the disease requires appropriate intensive treatment. One of promising treatment is statin administration, these being 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors that exert pleiotropic anti-inflammatory effects. Recent studies indicate that statin therapy is associated with decreased mortality in COVID-19, which may be caused by direct and indirect mechanisms. According to literature data, statins can limit SARS-CoV-2 cell entry and replication by inhibiting the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). The cytokine storm can be ameliorated by lowering serum IL-6 levels; this can be achieved by inhibiting Toll-like receptor 4 (TLR4) and modulating macrophage activity. Statins can also reduce the complications of COVID-19, such as thrombosis and pulmonary fibrosis, by reducing serum PAI-1 levels, attenuating TGF-β and VEGF in lung tissue, and improving endothelial function. Despite these benefits, statin therapy may have side effects that should be considered, such as elevated creatinine kinase (CK), liver enzyme and serum glucose levels, which are already elevated in severe COVID-19 infection. The present study analyzes the latest findings regarding the benefits and limitations of statin therapy in patients with COVID-19.  相似文献   

4.
Currently, extracellular vesicles (EVs) have been implicated in the etiopathogenesis of many diseases, including lung disorders, with the possibility of diagnostic and therapeutic applications. The analysis of EV in respiratory tract diseases faces many obstacles, including material collection from airways, standardization of isolation techniques, detection methods, the analysis of their content, etc. This review focuses on the role of extracellular vesicles in the pathogenesis of atopic respiratory diseases, especially asthma, with a special focus on their clinical applicability as a diagnostic tool. We also summarize available laboratory techniques that enable the detection of EVs in various biological materials, with particular emphasis on flow cytometry. The opportunities and limitations of detecting EV in bronchoalveolar lavage fluid (BALF) were also described.  相似文献   

5.
Colloidal drug delivery systems have been extensively investigated as drug carriers for the application of different drugs via different routes of administration. Systems, such as solid lipid nanoparticles, polymeric nanoparticles and liposomes, have been investigated for a long time for the treatment of various lung diseases. The pulmonary route, owing to a noninvasive method of drug administration, for both local and systemic delivery of an active pharmaceutical ingredient (API) forms an ideal environment for APIs acting on pulmonary diseases and disorders. Additionally, this route offers many advantages, such as a high surface area with rapid absorption due to high vascularization and circumvention of the first pass effect. Aerosolization or inhalation of colloidal systems is currently being extensively studied and has huge potential for targeted drug delivery in the treatment of various diseases. Furthermore, the surfactant-associated proteins present at the interface enhance the effect of these formulations by decreasing the surface tension and allowing the maximum effect. The most challenging part of developing a colloidal system for nebulization is to maintain the critical physicochemical parameters for successful inhalation. The following review focuses on the current status of different colloidal systems available for the treatment of various lung disorders along with their characterization. Additionally, different in vitro, ex vivo and in vivo cell models developed for the testing of these systems with studies involving cell culture analysis are also discussed.  相似文献   

6.
The identification of markers of inflammatory activity at the early stages of pulmonary diseases which share common characteristics that prevent their clear differentiation is of great significance to avoid misdiagnosis, and to understand the intrinsic molecular mechanism of the disorder. The combination of electrophoretic/chromatographic methods with mass spectrometry is currently a promising approach for the identification of candidate biomarkers of a disease. Since the fluid phase of sputum is a rich source of proteins which could provide an early diagnosis of specific lung disorders, it is frequently used in these studies. This report focuses on the state-of-the-art of the application, over the last ten years (2011–2021), of sputum proteomics in the investigation of severe lung disorders such as COPD; asthma; cystic fibrosis; lung cancer and those caused by COVID-19 infection. Analysis of the complete set of proteins found in sputum of patients affected by these disorders has allowed the identification of proteins whose levels change in response to the organism’s condition. Understanding proteome dynamism may help in associating these proteins with alterations in the physiology or progression of diseases investigated.  相似文献   

7.

Background  

Human β-defensin (hBD)-2, antimicrobial peptide primarily induced in epithelial cells, is a key factor in the innate immune response of the respiratory tract. Several studies showed increased defensin levels in both inflammatory lung diseases, such as cystic fibrosis, diffuse panbronchiolitis, idiopathic pulmonary fibrosis and acute respiratory distress syndrome, and infectious diseases. Recently, epidemiologic studies have demonstrated acute and serious adverse effects of particulate air pollution on respiratory health, especially in people with pre-existing inflammatory lung disease. To elucidate the effect of diesel exhaust particles (DEP) on pulmonary innate immune response, we investigated the hBD-2 and interleukin-8 (IL-8) expression to DEP exposure in interleukin-1 beta (IL-1β)-stimulated A549 cells.  相似文献   

8.
9.
10.
COVID-19 is a highly contagious new infection caused by the single-stranded RNA Sars-CoV-2 virus. For the first time, this infection was recorded in December 2019 in the Chinese province of Wuhan. The virus presumably crossed the interspecies barrier and passed to humans from a bat. Initially, the disease was considered exclusively in the context of damage to the respiratory system, but it quickly became clear that the disease also entails serious consequences from various systems, including the cardiovascular system. Among these consequences are myocarditis, myocardial damage, subsequent heart failure, myocardial infarction, and Takotsubo syndrome. On the other hand, clinical data indicate that the presence of chronic diseases in a patient aggravates the course and outcome of coronavirus infection. In this context, the relationship between COVID-19 and atherosclerosis, a condition preceding cardiovascular disease and other disorders of the heart and blood vessels, is particularly interesting. The renin-angiotensin system is essential for the pathogenesis of both coronavirus disease and atherosclerosis. In particular, it has been shown that ACE2, an angiotensin-converting enzyme 2, plays a key role in Sars-CoV-2 infection due to its receptor activity. It is noteworthy that this enzyme is important for the normal functioning of the cardiovascular system. Disruptions in its production and functioning can lead to various disorders, including atherosclerosis.  相似文献   

11.
The Chinese medicine monomer cynaroside (Cy) is a flavonoid glycoside compound that widely exists in plants and has a variety of pharmacological effects, such as its important role in the respiratory system, cardiovascular system and central nervous system. Studies have reported that Cy has varying degrees of anticancer activity in non-small cell lung cancer, cervical cancer, liver cancer, esophageal cancer and other cancers. However, there are no relevant reports about its role in gastric cancer. The MET/AKT/mTOR signaling pathway plays important roles in regulating various biological processes, including cell proliferation, apoptosis, autophagy, invasion and tumorigenesis. In this study, we confirmed that Cy can inhibit the cell growth, migration and invasion and tumorigenesis in gastric cancer. Our finding shows that Cy can block the MET/AKT/mTOR axis by decreasing the phosphorylation level of AKT, mTOR and P70S6K. Therefore, the MET/AKT/mTOR axis may be an important target for Cy. In summary, Cy has anti-cancer properties and is expected to be a potential drug for the treatment of gastric cancer.  相似文献   

12.
Origanum vulgare L. is a widely used aromatic plant, especially due to its content in essential oil, mainly rich in carvacrol and thymol. The ethnopharmacological uses of Origanum vulgare L. essential oil (OEO) comprise digestive, respiratory, or dermatological disorders. The review focuses on the increasing number of recent studies investigating several biological activities of OEO. The bioactivities are in tight relation to the phytochemical profile of the essential oil, and also depend on taxonomic, climatic, and geographical characteristics of the plant material. The antibacterial, antifungal, antiparasitic, antioxidant, anti-inflammatory, antitumor, skin disorders beneficial effects, next to antihyperglycemic and anti-Alzheimer activities were reported and confirmed in multiple studies. Moreover, recent studies indicate a positive impact on skin disorders of OEO formulated as nanocarrier systems in order to improve its bioavailability and, thus, enhancing its therapeutic benefits. The review brings an up to date regarding the phytochemistry and bioactivity of Origanum vulgare L. essential oil, underlining also the most successful pharmaceutical formulation used for skin disorders.  相似文献   

13.
The connecting peptide (C-peptide) has received increased attention for its potential therapeutic effects in ameliorating illnesses such as kidney disease and diabetes. Although the mechanism of C-peptide signaling remains elusive, evidence supports its internalization and intracellular function. Emerging research is uncovering the diverse biological roles metals play in controlling and affecting the function of bioactive peptides. The work presented herein investigates interactions between C-peptide and first-row d-block transition metals, as well as their effects on C-peptide internalization into cells. Through spectroscopic techniques, it is demonstrated that CrIII, CuII, and ZnII bind to C-peptide with differing stoichiometries and biologically relevant affinities. In addition, metal binding elicits both subtle changes in secondary structure and inhibits adoption of an α-helical character in environments where the dielectric constants are reduced. This study shows how metal ions can modulate peptide hormone activity through subtle structural changes to disrupt cellular uptake.  相似文献   

14.

Lipid microtubules have been suggested as possible drug delivery vehicles in aerosol therapy applications. In our previous work it was shown that tubules of respirable size were aerosolizable from a standard Collison-type air-jet nebulizer. In this work, the effects of nebulization time and pressure on lipid tubules of 1, 2-bis(10, 12-tricosadiynoyl)- sn -glycero-3-phosphocholine (DC8 , 9PC) are examined. Tubules were formed in a 55 percent ethanol:water solution, centrifuged and washed to remove the alcohol, aerosolized at 10, 20, or 30 psi pressure for 60 min using a 3-jet Collison air jet nebulizer, and sampled into an API Aerosizer time-of-flight analyzer at 0, 1, 5, 10, 20, 30, and 60 min nebulization time. Aliquots of tubule suspension were withdrawn from the nebulizer reservoir at the same intervals for length distribution evaluation by light microscopy. Aerosol was also sampled over the 60-min period using a Stober spiral duct centrifuge and the deposited particles optically sized and counted to provide a time-averaged estimate of aerosol size distribution. The lipid particles were straight tubular structures of helically wound bilayer membranes, with 0.6 mu m diameter and log-normal length distribution. During nebulization the tubules underwent significant breakage; suspension tubule lengths decreased in a predictable manner with both increasing nebulization pressure and increasing number of passes through the nozzle. Aerosol aerodynamic size distributions measured with the timeof-flight analyzer were essentially identical for all nebulization pressures and times, and were indistinguishable from the time-averaged size distributions determined from aerosol centrifuge particle deposition data. Comparison of observed aerosol size distribution with expected distribution for an ideal air-jet nebulizer suggested that the Collison nebulizer preferentially aerosolized shorter tubules, consistent with known air-jet nebulizer operation. These results demonstrate that while lipid tubules undergo substantial resizing during nebulization, the resulting aerosol size distribution is stable and of respirable size for at least 60 min nebulization time.  相似文献   

15.
Apigenin-7-glycoside (AP7Glu) with multiple biological activities is a flavonoid that is currently prescribed to treat inflammatory diseases such as upper respiratory infections. Recently, several studies have shown that its anti-inflammatory activities have been strongly linked to the inhibition of secretion of pro-inflammatory proteins, such as inducible nitric oxide synthase (iNOs) and cyclooxygenase-2 (COX-2) induced through phosphorylation nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPK) pathways. Additionally, inflammation, which can decrease the activities of antioxidative enzymes (AOEs) is also observed in these studies. At the same time, flavonoids are reported to promote the activities of heme oxygenase-1 (HO-1) decreased by LPS. The purpose of this study was to assess these theories in a series of experiments on the suppressive effects of AP7Glu based on LPS-induced nitric oxide production in RAW264.7 macrophages in vitro and acute lung injury in mice in vivo. After six hours of lipopolysaccharide (LPS) stimulation, pulmonary pathological, myeloperoxidase (MPO) activity, total polymorphonuclear leukocytes (PMN) cells, cytokines in bronchoalveolar lavage fluid (BALF) and AOEs, are all affected and changed. Meanwhile, our data revealed that AP7Glu not only did significantly inhibit the LPS-enhanced inflammatory activity in lung, but also exhibited anti-inflammatory effect through the MAPK and inhibitor NF-κB (IκB) pathways.  相似文献   

16.
Fine particulate matter (PM2.5) is a complex mixture of components with diverse chemical and physical characteristics associated with increased respiratory and cardiovascular diseases mortality. Our study aimed to investigate the effects of exposure to concentrated PM2.5 on LPS-induced lung injury onset. BALB/c male mice were exposed to either filtered air or ambient fine PM2.5 in an ambient particle concentrator for 5 weeks. Then, an acute lung injury was induced with nebulized LPS. The animals were euthanized 24 h after the nebulization to either LPS or saline. Inflammatory cells and cytokines (IL-1β, IL-4, IL-5, IL-6, IL-10, IL-17, TNF) were assessed in the blood, bronchoalveolar lavage fluid (BALF), and lung tissue. In addition, lung morphology was assessed by stereological methods. Our results showed that the PM+LPS group showed histological evidence of injury, leukocytosis with increased neutrophils and macrophages, and a mixed inflammatory response profile, with increased KC, IL-6, IL-1β, IL-4, and IL-17. Our analysis shows that there is an interaction between the LPS nebulization and PM2.5 exposure, differently modulating the inflammatory response, with a distinct response pattern as compared to LPS or PM2.5 exposure alone. Further studies are required to explain the mechanism of immune modulation caused by PM2.5 exposure.  相似文献   

17.
Smoking is a risk factor for a variety of deleterious conditions, such as cancer, respiratory disease and cardiovascular disease. Thrombosis is an important and common aspect of several cardiovascular disease states, whose risk is known to be increased by both first- and secondhand smoke. More recently, the residual cigarette smoke that persists after someone has smoked (referred to as thirdhand smoke or THS) has been gaining more attention, since it has been shown that it also negatively affects health. Indeed, we have previously shown that 6-month exposure to THS increases the risk of thrombogenesis. However, neither the time-dependence of THS-induced thrombus formation, nor its sex dependence have been investigated. Thus, in the present study, we investigated these issues in the context of a shorter exposure to THS, specifically 3 months, in male and female mice. We show that the platelets from 3-month THS-exposed mice exhibited enhanced activation by agonists. Moreover, we also show that mice of both sexes exposed to THS have decreased tail bleeding as well as decreased thrombus occlusion time. In terms of the role of sex, intersex disparities in thrombus development and hemostasis as well as in platelet aggregation were, interestingly, observed. Together, our findings show that exposing mice to THS for 3 months is sufficient to predispose them to thrombosis; which seems to be driven, at least in part, by an increased activity in platelets, and that it does not manifest equally in both sexes.  相似文献   

18.
Tuberculosis (TB) is an important infectious disease and a public health problem. The organs most frequently affected by TB are the lungs; despite this, it has been reported that TB patients suffer from depression and anxiety, which have been attributed to social factors. In previous experimental work, we observed that the extensive pulmonary inflammation characteristic of TB with high cytokine production induces neuroinflammation, neuronal death and behavioral abnormalities in the absence of brain infection. The objective of the present work was to reduce this neuroinflammation and avoid the psycho-affective disorders showed during pulmonary TB. Glucocorticoids (GCs) are the first-line treatment for neuroinflammation; however, their systemic administration generates various side effects, mostly aggravating pulmonary TB due to immunosuppression of cellular immunity. Intranasal administration is a route that allows drugs to be released directly in the brain through the olfactory nerve, reducing their doses and side effects. In the present work, dexamethasone’s (DEX) intranasal administration was evaluated in TB BALB /c mice comparing three different doses (0.05, 0.25 and 2.5 mg/kg BW) on lung disease evolution, neuroinflammation and behavioral alterations. Low doses of dexamethasone significantly decreased neuroinflammation, improving behavioral status without aggravating lung disease.  相似文献   

19.
Propolis is a honeybee product with various biological activities, including antidiabetic effects. We previously reported that artepillin C, a prenylated cinnamic acid derivative isolated from Brazilian green propolis, acts as a peroxisome proliferator-activated receptor γ (PPARγ) ligand and promotes adipocyte differentiation. In this study, we examined the effect of baccharin, another major component of Brazilian green propolis, on adipocyte differentiation. The treatment of mouse 3T3-L1 preadipocytes with baccharin resulted in increased lipid accumulation, cellular triglyceride levels, glycerol-3-phosphate dehydrogenase activity, and glucose uptake. The mRNA expression levels of PPARγ and its target genes were also increased by baccharin treatment. Furthermore, baccharin enhanced PPARγ-dependent luciferase activity, suggesting that baccharin promotes adipocyte differentiation via PPARγ activation. In diabetic ob/ob mice, intraperitoneal administration of 50 mg/kg baccharin significantly improved blood glucose levels. Our results suggest that baccharin has a hypoglycemic effect on glucose metabolic disorders, such as type 2 diabetes mellitus.  相似文献   

20.
With the rapid development of nanotechnology, a variety of engineered nanoparticles (NPs) are being produced. Nanotoxicology has become a hot topic in many fields, as researchers attempt to elucidate the potential adverse health effects of NPs. The biological activity of NPs strongly depends on physicochemical parameters but these are not routinely considered in toxicity screening, such as dose metrics. In this work, nanoscale titanium dioxide (TiO2), one of the most commonly produced and widely used NPs, is put forth as a representative. The correlation between the lung toxicity and pulmonary cell impairment related to TiO2 NPs and its unusual structural features, including size, shape, crystal phases, and surface coating, is reviewed in detail. The reactive oxygen species (ROS) production in pulmonary inflammation in response to the properties of TiO2 NPs is also briefly described. To fully understand the potential biological effects of NPs in toxicity screening, we highly recommend that the size, crystal phase, dispersion and agglomeration status, surface coating, and chemical composition should be most appropriately characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号