首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着锂离子电池的广泛应用,大量的废旧锂离子电池产量逐年增加,由于负极材料容量较低(≈175 mAh·g-1)以及需要较高的工作电势,硅负极材料仍然处于研究阶段,所以对大量的退役锂离子电池石墨负极进行高效回收直接再生具有重要的现实意义。为此,本文介绍近年来废旧锂离子电池石墨负极材料回收利用研究现状,分析废旧石墨负极常用回收利用方法优缺点,主要包括火法回收、湿法回收和材料再生等方案,并对废旧锂离子电池石墨负极材料的高效、绿色回收利用进行了展望。  相似文献   

2.
通过控制高比容量硅碳负极(1100 mAh·g-1)极片压实密度、引入不同尺寸的造孔剂,构筑电极的孔隙结构。采用压汞法(MIP)和扫描电子显微镜(SEM)等表征手段,研究极片的孔隙率、孔径大小和孔径分布对高比容量硅碳负极电化学性能的影响。结果表明:当电极的孔隙率控制在46.2%时,高比容量硅碳负极电极的循环性能较优,循环50周后仍保持765 mAh·g-1的可逆比容量。进一步通过引入不同尺寸的造孔剂碳酸铵((NH4)2CO3),优化电极的孔径大小和分布。当造孔剂碳酸铵的颗粒尺寸分布在10μm左右、添加量为10%(质量分数)时,构筑的高比容量硅碳负极电极的循环性能较优,循环50周后仍保持955.7 mAh·g-1的可逆比容量,大大提升了电极的循环稳定性;通过孔隙结构的控制,电极保持较好的倍率性能,1.0C倍率下仍保持1032.6 mAh·g-1的较高可逆比容量。将利用造孔剂优化过孔隙结构后的高容量硅碳负极应用于2安时软包装锂离子电池中,...  相似文献   

3.
采用机械化学活化水浸工艺对废旧磷酸铁锂正极材料中的金属锂进行回收,研究了共研磨试剂与废旧磷酸铁锂正极材料物质的量之比、球磨转速、球磨时间对金属锂浸出率的影响。在四种异晶型硫酸盐共研磨试剂与废旧磷酸铁锂正极材料物质的量之比为3∶1,球磨转速为400 r/min,球磨时间为4 h的条件下,共研磨试剂Na2S2O3、Na2SO3、Na2SO4和Na2S2O8的锂浸出率分别为42.7%、30.8%、58.3%和99.3%。以Na2S2O8作为共研磨试剂进行机械化学活化水浸回收锂时,具有较高的锂浸出率。滤液中的锂通过饱和碳酸钠溶液进行沉淀分离与提纯,得到的回收产物为Li2CO3,纯度可达98.5%。该方法实现了废旧磷酸铁锂正极材料中有价金属锂的高效回收。  相似文献   

4.
表面活性剂在材料合成时具有形貌控制方面的重要作用,为提高镍三元正极材料LiNi0.8Co0.1Mn0.1O2的综合电化学性能,本文通过在正极材料前驱体Ni0.8Co0.1Mn0.1(OH)2合成过程中加入不同的表面活性剂来控制三元材料的形貌,并对煅烧后所得的高镍三元产物材料LiNi0.8Co0.1Mn0.1O2进行形貌和电化学性能分析,结果表明:利用表面活性剂合成的产物材料有着更加规整的形貌和晶体结构稳定性;分别添加十二烷基苯磺酸钠、蔗糖、十六烷基三甲基溴化铵以及聚乙二醇之后,首次充电比容量分别可以达到232.2 mAh·g-1、248.1 mAh·g-1、231.3 mAh·g-1以及216.1 mAh·g-1,其中十六烷基三甲基溴化铵的...  相似文献   

5.
硅(Si)因拥有高的比容量,资源丰富等优势有望成为下一代高性能锂离子电池负极材料,但其导电性差和循环过程中体积膨胀严重等缺陷限制了其进一步应用。采用喷雾干燥法,以玉米淀粉、纳米硅和NH4VO3作为原料,经碳化与氮化后获得氮化钒/纳米硅/碳复合微球(Si@VN/C)。氮化钒的引入提供了电子/离子快速传输通道,提高了纳米硅的导电率,并使纳米硅保持了良好的结构稳定性。碳层将作为纳米硅颗粒的保护层,避免纳米硅与电解液直接接触,有效缓解纳米硅充放电后的体积膨胀。Si@VN/C展现出良好的循环性能,在0.2 A·g-1电流密度下循环130圈后容量为818 mAh·g-1,在0.5 A·g-1高电流密度下循环300圈后可逆容量仍保持580.5 mAh·g-1。  相似文献   

6.
以废旧三元正极材料作为原料,提出了还原焙烧与氨基磺酸浸出相结合的工艺,提高锂的回收效率,同时实现组分的分步分离回收。在焙烧温度650℃、碳用量10%、还原焙烧时间90 min条件下,三元正极材料被还原为Li2CO3、NiO、MnO、Ni、Co的混合物,还原焙烧产物分步浸出,水浸回收锂,酸浸回收镍、钴、锰。采用氨基磺酸浸出水浸渣,最佳酸浸条件:氨基磺酸浓度0.75 mol/L、浸出温度60℃、固液比28 g/L、浸出时间40 min,此条件下镍、钴、锰的浸出率分别可以达到98.77%、98.71%、98.45%。  相似文献   

7.
氮化钛(TiN)因其具有资源丰富、无毒、低成本和高化学稳定性等特点,可作为一种新型、高容量的锂离子电池负极材料。而其较差的离子和电子传导率无法满足高能量密度锂离子电池的需求。因此,本论文通过设计制备出氮掺杂碳材料负载钴(5%)掺杂TiN纳米颗粒(Ti0.95Co0.05N/NC),通过调节二聚氰胺(DCDA)加入量调控碳材料的石墨化程度,优化孔结构及其电导率。其中Ti0.95Co0.05N/NC-1具有较高的比容量,在100 mA·g-1电流密度下循环120圈后,比容量仍然高于530 mAh·g-1。  相似文献   

8.
以碳酸锂(Li2CO3)为锂源, 磷酸二氢铵(NH4H2PO4)为磷源, 草酸亚铁(FeC2O4·2H2O)为铁源, 柠檬酸(C6H8O7·H2O)为碳源, 采用固相反应法制备橄榄石晶型磷酸铁锂。利用X射线衍射仪, 扫描电子显微镜, 能谱仪, 比表面积分析仪和电化学测试等设备和方法对磷酸铁锂材料的物相组成、结构、形貌和电化学性能进行表征, 研究煅烧温度和保温时间对磷酸铁锂电化学性能的影响, 并通过添加碳对试样进行包覆改性。结果表明, 在煅烧温度为700℃, 保温时间为12 h条件下制备的磷酸铁锂正极材料的电化学性能良好, 碳包覆能有效改善电极材料的性能。包覆碳后的磷酸铁锂电极材料在0.2C充电电流密度下首次放电比容量可达319.2 mAh·g-1; 在1C充电电流密度下循环100次后, 放电比容量保持在168.1 mAh·g-1。  相似文献   

9.
近几年,锂离子电池富锂材料xLi2MnO3·(1-x) LiMO2(M=Ni、Co、Mn等) 由于其高放电比容量、高电压、低廉的价格受到人们越来越多的关注.但是,富锂材料循环性能差、倍率性能低、首圈充放电效率低和电压降等问题是阻止富锂材料商业化的几个主要原因。采用液相法合成富锂材料Li[Li0.2Mn0.54Co0.13Ni0.13]O2,通过表面包覆一层ZrO2, 放电倍率1 C下循环100圈之后,2% ZrO2包覆量的富锂材料的放电比容量比未包覆的放电比容量多53.8 mAh/g,大大提高富锂材料的循环性能.   相似文献   

10.
黄文龙  孟必成  李捷  程帆  杨凯  方钊 《稀有金属》2023,(11):1506-1514
为了弥补锂离子电池能量密度低、双离子电池(DIBs)容量低的问题,将铝电解废阴极碳(SCC)与商用镍钴铝酸锂(NCA)结合,制备一种复合电极材料用于双离子电池正极。该复合电极在工作电压区间能够同时实现阳离子(Li+)脱出与阴离子(PF6-)嵌入,满足高能量密度、低成本的要求。由于低电压区间锂离子的脱嵌,SCC@NCA的初始放电比容量能够达到98.2 mAh·g-1,较纯SCC(28.4 mAh·g-1)有明显提高。在150mA·g-1电流强度下循环210圈后仍有57.3%的容量保持率,并且该复合电极能够表现出378.8 Wh·kg-1的高能量密度,即使在2677.1 W·kg-1的高功率密度下,能量密度仍保持在187.4 Wh·kg-1。同时由于SCC的微膨胀结构给离子的扩散提供了更宽的迁移通道,复合后电极材料表现出更小的阻抗和更高的锂离子扩散速率。优异的电化学性能为SCC的研究和应用提供了...  相似文献   

11.
采用氯化焙烧—水浸的方法从某Li2O品位为3.23%的锂云母浮选精矿中回收锂,考察了焙烧过程中氯化剂用量、焙烧温度、焙烧时间,浸出过程中液固比、浸出温度、浸出时间对Li2O浸出率的影响。结果表明:在CaCl2用量为锂云母精矿质量的3/4,焙烧温度900℃,焙烧时间40min,焙烧渣在液固比3∶1,室温浸出40min的条件下,Li2O浸出率可达到95.36%,回收效果较好。  相似文献   

12.
硅因其具有较高的理论比容量(约为3 579 mAh/g,Li15Si4)而成为最具吸引力的负极材料。为了解决硅材料高达300%的体积膨胀和导电性差等问题,以聚丙烯酸(PAA)、蚕茧提取物丝素蛋白和纳米硅(Si NPs)为原料,通过简单的部分炭化,一步法制备了Si@CAS电极材料,并系统研究了聚丙烯酸(A)/丝素蛋白(S)的比例和炭化温度对Si@CAS复合材料电化学性能的影响。结果表明:当聚丙烯酸与丝素蛋白的质量比为1∶1,炭化温度为450℃时,所制备的Si@CAS负极的电化学性能较优,远超Si@CA和Si@CS负极材料的电化学性能。Si@CAS负极材料可在0.5 A/g电流密度下循环200圈后比容量可达1 404.2 mAh/g。同时,该材料展现出了优异的倍率性能,在4 A/g电流密度下比容量仍可达1 452.8 mAh/g。  相似文献   

13.
锡基双金属氧化物作为锂离子电池负极材料因具有高的理论比容量、嵌脱锂电位适中、储量丰富、价格低廉、安全性高以及环保等优点,已经受到了广泛的关注.本研究采用一步原位水热法制备了碳包覆的ZnSnO3复合材料(ZnSnO3/C).利用扫描电子显微镜、透射电子显微镜、X射线衍射、拉曼光谱、X射线光电子能谱分析和恒流充放电测试等一系列表征测试方法对材料的微观形貌、物相组成、结构和电化学性能进行分析.电化学测试结果表明:当作为锂离子电池负极材料时,ZnSnO3/C复合电极的储锂性能优于纯ZnSnO3电极.在200 mA·g–1电流密度下,ZnSnO3/C复合电极经200次循环后可逆容量可达1274.9 mA·h·g–1,即使在大电流5000 mA·g–1下经500次循环仍然提供663.2 mA·h·g–1的放电比容量,同时也表现出卓越的倍率性能.优异的储量性能归因于ZnSnO3/C复...  相似文献   

14.
研究了采用H2SO4+Na2SO3溶液从废旧锂电池正极材料中浸出有价金属镍、钴、锰,然后以共沉淀—固相法从浸出液中回收镍钴锰酸锂,考察了硫酸浓度、亚硫酸钠用量、浸出时间、温度和液固体积质量比对金属浸出率的影响。结果表明:在硫酸浓度2 mol/L、亚硫酸钠用量为理论量1.2倍、温度70℃、浸出时间90 min、液固体积质量比11 mL/1 g条件下,镍、钴、锰浸出率分别为98.21%、97.46%、96.87%;从浸出液中回收的镍钴锰酸锂结晶性良好,金属元素分布均匀,可用于制备电池正极。  相似文献   

15.
以Cu_3Si/Si复合物为锂离子电池负极材料,研究Cu_3Si组分对活性物质Si的电化学储锂性能的影响。结果表明,Cu_3Si并无储锂能力,但能够提升活性物质Si的循环和倍率性能。在200mA/g充放电流密度下,负极首次嵌锂比容量为1 345mAh/g,首次库伦效率为88.37%,经过100次循环后,材料的可逆比容量为698.7mAh/g。Cu_3Si/Si负极在200、500、1 000mA/g电流密度下比容量分别为1 346.22、754.33和564.78mAh/g。当电流密度重新回到200mA/g时,可逆比容量仍高达1 030.58mAh/g,体现出了良好的倍率性能。  相似文献   

16.
研究了采用静电纺丝法制备NiCo2O4纳米纤维前驱体,并将煅烧后的NiCo2O4纤维用作锂离子电池负极材料,考察了其电化学性能。结果表明:质量比2∶1的Co(NO3)2和Ni(NO3)2经电纺可制备出直径约400 nm的NiCo2O4纳米纤维前驱体;以NiCo2O4纤维作负极材料的锂离子电池首次放电比容量为1 141 mAh/g, 100次循环后放电比容量约为415 mAh/g;电池内部成分电阻仅为3.77Ω,循环性能稳定。  相似文献   

17.
以废弃三元锂离子电池正极材料(spent-NCM)为研究对象,葡萄糖(C6H12O6)为焙烧剂,采用焙烧—水浸工艺实现锂的选择性优先浸出。结果表明,在600℃焙烧90 min、C6H12O6与spent-NCM质量比25%、浸出液固比20 mL/g的条件下,spent-NCM中的有价金属元素转变为水溶性的Li2CO3和不溶性的Ni、Co和MnO,焙烧产物经水浸可选择性优先分离Li, Li的浸出率为95.62%。  相似文献   

18.
为了解决传统的硒基复合正极材料导电性差,循环寿命短,倍率性能差,活性物质大量流失的问题。本文采用SiO2纳米球为模板,N,N’-二水杨醛乙二胺钴为钴源,盐酸多巴胺为氮源和碳源,合成了一种新型的钴-氮共掺杂空心碳球(Co-N-C),并将其作为硒正极宿主材料复合得到Co-N-C/Se复合正极。在0.5C充放电电流密度下,Co-N-C/Se复合正极材料循环200圈后,比容量仍高达238 mAh·g-1,且经过阶梯放电,在40圈后,2.0C大电流充放电密度下,比容量仍能维持在222 mAh·g-1。利用导电碳骨架、多样性的化学吸附位点和催化活性位点协同作用成功获得高比容量、大倍率性能及长循环寿命的Li-Se电池。  相似文献   

19.
以废航天磁性材料为原料,研究了Co,Ni在H2SO4常压条件下的浸出工艺及动力学行为。结果表明:原料中Co,Ni含量总体随粒度的增大而增加,温度、硫酸浓度对Co,Ni浸出率影响较为显著,并且Co浸出速度更快。在硫酸溶液与原料液固比(体积(ml)/质量(g))为50∶1,废航天磁性材料粒度为58~106μm,初始H2SO4浓度为3 mol·L-1,搅拌速率为300 r·min-1,温度为90℃的优化条件下,反应60 min后,Co,Ni浸出率均可达到94%以上。经扫描电子显微镜(SEM)和X射线衍射(XRD)分析,原料为表面疏松多孔的不规则长带(片)状结构,主要成分为AlNi3,CoFe,Fe2AlTi等;反应后,产物主要为Al2O3和Cu2O块状固体,从形貌上看其结构较为致密,阻碍了Co,Ni的完全浸出。采用平板(片)状未反应收缩核模型和Avram...  相似文献   

20.
以废旧锂离子电池负极材料钛酸锂为原料,经预处理后,利用稀硫酸优先浸出工艺分离回收废料中的Li和Ti,考察了硫酸浓度、液固比、浸出温度和浸出时间在酸浸过程中对Li和Ti浸出率的影响。试验结果表明:优化的稀硫酸优先浸出工艺参数为硫酸浓度4mol/L,液固比6∶1,水浴温度80℃,反应时间4h;在此条件下,Li一次浸出率为90%,Ti浸出率为1.08%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号