首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work demonstrates the preparation of Ag3VO4/ZnO nanocomposites with an n–n heterojunction, as novel visible-light-driven photocatalysts, with different mole fractions of silver vanadate. The preparation method is facile one-pot, large-scale, and low-temperature and does not require any post preparation treatments. The microstructure, morphology, purity, and electronic properties of the as-prepared samples were studied using X-ray diffraction, scanning electron microscopy, energy dispersive analysis of X-rays, UV–vis diffuse reflectance spectroscopy, Fourier transform-infrared spectroscopy, and photoluminescence techniques. Photocatalytic activity of the nanocomposites was examined by degradation of rhodamine B under visible-light irradiation. It was found that mole fraction of silver vanadate has a considerable influence on the photocatalytic activity. The nanocomposite with 0.218 mol fraction of Ag3VO4 exhibited the superior activity relative to the other compositions. Compared with the pure ZnO and Ag3VO4, the nanocomposite exhibited 10.5 and 1.6-fold enhancement, respectively, in the degradation rate constant. In addition, influence of the refluxing time, calcination temperature, and scavengers of reactive species on the degradation activity was investigated in detail and the results were discussed. Moreover, the nanocomposite was found to be a reusable photocatalyst.  相似文献   

2.
A high-performance photocatalyst of AgI–Ag3PO4/multi-walled carbon nanotubes (MWCNTs) was fabricated by chemical precipitation method using KI, K2HPO4 and AgNO3 in the presence of MWCNTs. Its structure and physical properties were characterized by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), UV–vis absorption spectra, X-ray photo-electron spectroscopy (XPS), photoluminescence spectra (PL) and photocurrent techniques. SEM, TEM and EDS analyses verified that AgI–Ag3PO4 is successfully loaded on MWCNTs. AgI–Ag3PO4/MWCNTs possess the absorption edge of red shift and small band gap energy, and could absorb more photons in the visible region. PL and photocurrent analyses illustrated that AgI–Ag3PO4/MWCNTs have the lowest emission peak intensity and the highest photoelectric current, compared with Ag3PO4, AgI and AgI–Ag3PO4. By using the photocatalytic degradation of mixed dyes wastewater of Orange II and ponceau 4R as a model reaction, the photocatalytic efficiencies of Ag3PO4, AgI, AgI–Ag3PO4 and AgI–Ag3PO4/MWCNTs were evaluated. The reaction results showed that AgI–Ag3PO4/MWCNTs have strong photocatalytic activity and excellent chemical stability in repeated and long-term applications. Therefore, the prepared AgI–Ag3PO4/MWCNTs could act as a high-performance catalyst for the photocatalytic degradation of mixed dyes wastewater and also suggested the promising applications.  相似文献   

3.
To further improve the separation of photo-induced charge carriers, Ag2CO3 was employed to couple with ZnO. In this paper, Ag2CO3 was facilely deposited on the surface of ZnO through a precipitation method. The effects of loading content of Ag2CO3 on the charge separation of Ag2CO3/ZnO composites and their photocatalytic performance were studied by the means of surface photovoltage spectroscopy (SPS). Coupling of ZnO with Ag2CO3 can greatly accelerate the charge separation under the simulated solar light irradiation, supported by the SPS results. The enhancement of charge separation rate and photocatalytic activities of Ag2CO3/ZnO composites notably depends on the loading content of Ag2CO3. With the optimal theoretical Ag/Zn molar ratio of 3/100, the composite exhibits the highest charge separation rate and photocatalytic activity under the simulated solar light illumination. To better comprehend the improved separation of the photo-induced charge carriers, a Z-scheme charge separation mechanism was proposed.  相似文献   

4.
A visible-light-active Ag3PO4/BiPO4 nanocomposite with a p–n heterojunction structure was fabricated via a co-precipitation hydrothermal process using 2-hydroxylethylammonium formate (RTIL) as a room-temperature ionic liquid. The resulting catalysts were characterized by various techniques. The photocatalytic activity of the photocatalysts was evaluated by the photodegradation of phthalocyanine Reactive Blue 21 (RB21) under both visible and UV light irradiations. The results reveal that the heterojunction composite prepared in RTIL noticeably exhibited an improvement in both efficiency and rate of RB21 photodegradation in comparison with pure Ag3PO4 and BiPO4. The enhanced photocatalytic activity of Ag3PO4/BiPO4 heterostructure prepared in RTIL is mainly ascribed to the internal electric field built at the heterojunction interface and efficient charge separation and transfer across the p–n junction. RTIL can also assist in decreasing the crystalline size, orderly distributing the particles, preventing the collapse of pore structures, and losing of composite surface area.  相似文献   

5.
Ag3POa/AgC1 hybrids have been synthesized via a facile ion-exchange method. The hybrids exhibit an enhanced photocatalytie activity for degradation of rhodamine B (RhB) than the single Ag-3PO_4 or AgCl under a visible light irradiation. Such a behavior might be attributed to the increased number of high active sites and suitable energy band structure. The possible mechanism is also discussed.  相似文献   

6.
Several novel micro-nano Ag3PO4/ZnFe2O4 with excellent magnetic separation property and photocatalytic performance were successfully synthesized using different organic additives for the first time. In the composite, Ag3PO4 with flower-like, quadrangular prism and flake structures were obtained when the organic additive is hexadecyl trimethyl ammonium bromide (CTAB), sodium diethyldithiocarbamate (DDTC), or DL-malic acid (DLMA), respectively, while the ZnFe2O4 showed uniform spherical structure. From the results of the photocatalytic activity analysis, the Ag3PO4/ZnFe2O4 gained with the organic additive of DDTC showed the highest photocatalytic capability for 2, 4-dichlorophenol (2, 4-DCP) degradation under visible light irradiation compared with those of CTAB and DLMA as the additives. Moreover, the composition of the composite seriously influences the photocatalytic activity, and when the mass ratio of Ag3PO4 and ZnFe2O4 in the Ag3PO4/ZnFe2O4 (DITCH) is 9:1, the apparent photo degradation rate constant of 2, 4-DC is 0.0155 min−1, which is 5.74 times of ZnFe2O4 (0.0027 min−1) and 1.89 times of Ag3PO4 (0.0082 min−1). Finally, the photocatalytic mechanism of Ag3PO4/ZnFe2O4 was discussed based on the heterojunction energy-band theory and Z-Scheme theory in detail.  相似文献   

7.
In this study, graphene oxide/CuInS2/ZnO as a new photocatalyst with light absorption properties in the visible region were successfully synthesized via hydrothermal route. The UV–vis absorption spectra of the catalyst suggested that the graphene oxide/CuInS2/ZnO is active under visible light. It was evaluated the photocatalytic activities of graphene oxide/CuInS2/ZnO on the degradation of Rhodamine B under visible light irradiation and was found that the graphene oxide/CuInS2/ZnO obtained exhibit photocatalytic activity higher than single ZnO and CuInS2/ZnO. Presence of graphene oxide with high specific surface area and great conductivity make it as a good support for CuInS2/ZnO and improves removal efficiency for degradation of Rhodamine B.  相似文献   

8.
We prepared ZnO photocatalysts with different Ce-doping levels using a simple one-step solution method utilizing Zn(NO3)2, Ce(NO3)3, and NaOH as raw materials. X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller surface area analysis, ultraviolet–visible diffusion spectroscopy, and photoluminescence spectroscopy were used to characterize the products. Ce-doping greatly influences the size, morphology, and optical properties of the samples. The particle size of Ce/ZnO samples decreases and the specific surface area increases accordingly compared with that of pure ZnO. The optical absorption edge of the Ce/ZnO samples displays an obvious red shift. Moreover, the band gap energy decreases with the increasing Ce content. The Ce/ZnO samples exhibit significantly enhanced photocatalytic performance than pure ZnO. The 1% Ce/ZnO sample possesses excellent photocatalytic activity in decomposing methylene blue (MB). The MB degradation efficiency reaches 96.11% after 140 min of irradiation.  相似文献   

9.
The silver ionic conductivity in heterogeneous systems of AgBr:Al2O3 and AgI:Al2O3 is highly enhanced by utilizing mesoporous Al2O3 as the insulating phase. The highest Ag+ conductivity of 3.1 × 10–3 Ω–1 cm–1 (at 25 °C) has been obtained for the AgI:Al2O3 composite with an Al2O3 volume fraction of 0.3. For AgBr:Al2O3, the enhancement of the conductivity is satisfactorily explained in the framework of the ideal space‐charge model, while in the case of AgI:Al2O3 stacking disorder is also considered to contribute to the ionic conductivity.  相似文献   

10.
In the current study, ultraviolet-active zinc oxide/maghemite (ZnO/γ-Fe2O3) nanocomposite catalysts were prepared and applied to the photodecomposition of 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D is a herbicide that is widely used in agriculture and landscape turf management. The ZnO/γ-Fe2O3 nanocomposite catalyst was prepared using a simple and efficient precipitation–thermal decomposition method. Comprehensive experimental studies and characterizations such as X-ray diffraction (XRD), TEM, Brunauer–Emmett–Teller (BET) and UV–vis diffuse reflectance spectrum (UV-DRS) analyses were conducted to optimize the photoactivity of the nanoparticles. Interestingly, the synthesized ZnO/γ-Fe2O3 nanocomposite catalyst exhibited a hexagonal phase with wurtzite structure, and their active surface area decreased with increasing calcination temperature. Based on the TEM micrographs, the appearance of the ZnO/γ-Fe2O3 nanocomposite catalyst is nearly spherically shaped with a mean particle size in the range of 13–35 nm. The nano-ZnO/γ-Fe2O3 that underwent heat treatment at 450 °C exhibited better photodecomposition of 2,4-D, which was primarily due to the highest specific surface area and the smallest particle size among the synthesized samples.  相似文献   

11.
Polyvinyl pyrrolidone (PVP) capped Zn1−xCrxO (0.000001≤x≤0.1) nanocomposites were successfully synthesized using a simple chemical co-precipitation technique. The synthesized nanostructures were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray fluorescence (EDXRF), Fourier-transform infrared spectroscopy (FTIR), UV–visible spectroscopy, photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements. The structural characterization by XRD, TEM, FTIR and EDXRF confirmed the formation of wurtzite structure and incorporation of Cr in the ZnO lattice. The photocatalytic activities of as prepared nanocomposites were evaluated by degradation of methylene blue (MB) dye in aqueous solution under UV/sunlight light irradiation. The results demonstrated that Zn1−xCrxO (x=0.0001) nanocomposite effectively bleached out MB, showing as impressive photocatalytic enhancement over pure ZnO and ZnS nanoparticles. This enhanced photocatalytic activity at optimum concentration was attributed to increased absorption ability of light and high separation rate of photoinduced charge carriers on the nanocomposite photocatalyst surface. The VSM measurements showed significant ferromagnetism in Cr-doped ZnO nanostructures and the value of saturated magnetism was found to decrease with increase in Cr content.  相似文献   

12.
Highly efficient visible-light-driven AgBr/Ag3PO4 hybrid photocatalysts with different mole ratios of AgBr were prepared via an in-situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgBr/Ag3PO4 photocatalysts displayed the higher photocatalytic activity than pure Ag3PO4 and AgBr for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgBr/Ag3PO4 with 60% of AgBr exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgBr/Ag3PO4 readily transformed to be Ag@AgBr/Ag3PO4 system while the photocatalytic activity of AgBr/Ag3PO4 remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h+ and O2∙− play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgBr/Ag3PO4 hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag3PO4, Ag and AgBr, in which Ag nanoparticles act as the charge separation center.  相似文献   

13.
The development of Au/AgI dimeric nanoparticles (NPs) is reported for highly selective colorimetric detection of hydrogen sulfide (H2S). The detection mechanism is designed by taking advantage of the chemical transformation of AgI to Ag2S upon reacting with sulfide, which leads to a shift in the plasmonic band of the attached Au NPs. The plasmonic shift is accompanied by a color change of the solution from purplish red to blue and finally to light green depending on the concentration of sulfide, thus enables a naked‐eye readout and UV–vis quantitation of the sulfide exposure. The Au/AgI dimeric NPs are further immobilized in agarose gels to produce test strips, which can be used for both naked‐eye readout and quantitative detection of sulfide using UV–vis spectroscopy thanks to its transparency in the visible region. Compared to commercial Pb(Ac)2 test papers, the agarose gel strip has superior performance for detecting sulfide in terms of sensitivity, selectivity, stability, and fidelity. The agarose gel is also capable of detecting gaseous H2S at important concentration thresholds, suggesting its practicability in real life applications. The potential of agarose gels is further highlighted by its ability in the enrichment and colorimetric detection of gaseous H2S released during cell cultivation.  相似文献   

14.
Semiconductor photocatalysis technology has aroused great interest in photocatalytic degradation, but it suffers from the drawbacks of fast electron‐hole recombination and unsatisfactory degradation efficiency. Herein, a novel photocatalyst Ag3PO4@NC with excellent photocatalytic activity is successfully prepared, characterized, and evaluated for the efficient removal of organic pollutants. After visible light irradiation for 5, 8, and 12 min, the photocatalytic degradation efficiency of norfloxacin, diclofenac, and phenol on the composite catalyst reaches 100%, and the apparent rate constant of which is 19.2, 48.7, and 23.2 times than that of the pure Ag3PO4, respectively. The density functional theory calculation results indicate that there is a built‐in electric field from N‐doped carbon (NC) to Ag3PO4 at the interface of the composite catalyst. Driven by the electric field, the photogenerated electrons of Ag3PO4 can be readily transferred to the NC, leading to the efficient separation of photogenerated carriers and the significant improvement of the catalytic performance. The results of radical trapping experiments and electron spin resonance analysis show that photogenerated holes and O2? play an important role in the photodegradation process. This work provides a universal strategy of construction built‐in electric field through coupling with NC to improve the photocatalytic performance of photocatalysts.  相似文献   

15.
Photoelectrochemical (PEC) water splitting offers a promising strategy for converting solar energy to chemical fuels. Herein, a piezoelectric‐effect–enhanced full‐spectrum photoelectrocatalysis with multilayered coaxial titanium dioxide/barium titanate/silver oxide (TiO2/BTO/Ag2O) nanorod array as the photoanode is reported. The vertically grown nanorods ensure good electron conductivity, which enables fast transport of the photogenerated electrons. Significantly, the insertion of a piezoelectric BaTiO3 (BTO) nanolayer at the p‐type Ag2O and n‐type TiO2 interface created a polar charge‐stabilized electrical field. It maintains a sustainable driving force that attract the holes of TiO2 and the electrons of Ag2O, resulting in greatly increased separation and inhibited recombination of the photogenerated carriers. Furthermore, Ag2O as a narrow bandgap semiconductor has a high ultraviolet–visible–near infrared (UV–vis–NIR) photoelectrocatalytic activity. The TiO2/BTO/Ag2O, after poling, successfully achieves a prominent photocurrent density, as high as 1.8 mA cm?2 at 0.8 V versus Ag/Cl, which is about 2.6 times the TiO2 nanorod photoanode. It is the first time that piezoelectric BaTiO3 is used for tuning the interface of p‐type and n‐type photoelectrocatalyst. With the enhanced light harvesting, efficient photogenerated electron–hole pairs' separation, and rapid charge transfer at the photoanode, an excellent photoelectrocatalytic activity is realized.  相似文献   

16.
Novel visible-light-driven Ag3PO4@C3N4PO4 loaded with metal Ag were synthesised via an anion-exchange precipitation method and regenerated by H2O2 and NaNH3HPO4. The obtained Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4 were characterised by XRD, XPS, SEM and UV–vis. The XRD and UV–vis results revealed that the crystal structure and light adsorption property of Ag/Ag3PO4@C3N4 were similar to that of regenerated Ag/Ag3PO4@C3N4. The XPS result showed that the metallic Ag0 deposited on the surface of Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4. The Ag/Ag3PO4@C3N4 hybrids displayed remarkable photocatalytic activity and stability after regeneration. Compared with pure Ag3PO4 or C3N4, the Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4 enhancement in the photodegradation rate towards methyl orange is observed over under visible light irradiation. The enhanced photocatalytic performance was attributed to the synergistic effect between Ag3PO4 and C3N4 and a small amount of Ag0 which suppresses the charge recombination during photocatalytic process. This work could provide new insights into the fabrication of high stability visible photocatalysts and facilitate their practical application in environment issues.  相似文献   

17.
A nanocomposite film of La0.67Sr0.33MnO3 (LSMO):ZnO is synthesized by depositing LSMO solution on a vertical array of ZnO nanorods grown on (0001) Al2O3 substrate. The magnetic behavior of the composite film differs from that of a pure LSMO film, possibly due to smaller grain size in the composite, small amount of Zn doping, or the presence of nonmagnetic ZnO phase near the LSMO grain boundaries. Magnetotransport measurements show that the low‐field magnetoresistance (LFMR) of the nanocomposite film is significantly enhanced as compared to that observed for pure LSMO film. The highest value of the LFMR of the nanocomposite film at 10 K is –23.9% with a magnetic field of 0.5 T applied parallel to the current.  相似文献   

18.
Unique multiple heterojunction of Pt-BiOBr/TiO2 nanotube arrays (Pt-BiOBr/TNTAs) was achived by successively loading both Pt nanoparticles (NPs) and BiOBr nanoflkes (NFs) on surface of ordered and spaced TiO2 nanotubes (NTs) using anodization followed by solvothermal and sequential chemical bath deposition (S-CBD) method. The fabricated Pt-BiOBr/TNTAs were fully characterized, and the photocatalytic (PC) activity and stability of Pt-BiOBr/TNTAs toward degradation of methyl orange (MO) under visible-light irradiation (λ>400 nm) were evaluated. The results reveal that multiple heterostructures of Pt/TiO2, Pt/BiOBr and BiOBr/TiO2 are constructed among TNTAs substrate, Pt NPs and BiOBr NFs, and the hybrid Pt-BiOBr/TNTAs catalyst exhibits remarkable visible-light PC activity, favourable reusability and long-term stability. The combined effect of several factors may contribute to the remarkable PC performance, including strong visible-light absorption by both Pt NPs and BiOBr NFs, lower recombination rate of photo-generated electrons and holes attributed to the multiple heterojunction, microstructures for facile light injection and adsorption as well as efficient mass transport, and larger specific surface area for enhancing light absorption, increasing the effective contact area between the absorbed dye molecules and catalyst and benefiting the molecule transport of reactants or products. This work has been supported by the National Natural Science Foundation of China (Nos.51402078 and 51302060), Anhui Provincial Natural Science Foundation (No.1408085QE85), and the Young Scholar Enhancement Foundation (Plan B) of Hefei University of Technology in China (No.JZ2016HGTB0711). E-mail:jqliu@hfut.edu.cn   相似文献   

19.
Cu/tetrapod-like ZnO whisker (T-ZnOw) compounds were successfully synthesized using N2H4·H2O as a reducing agent by a simple reduction method without any insert gas at room temperature. The crystal phase composition and morphology of the as-prepared samples were investigated by XRD, SEM and FESEM tests. The photocatalytic property of the as-prepared samples was detected by the degradation of methyl orange (MO) aqueous solution under UV irradiation. It can be found that Cu nanoparticles (CuNPs) dispersed on the surface of T-ZnOw increased with the increasing of Cu/Zn molar ratios (Cu/Zn MRs), and an octahedral structure of CuNPs was obtained when the sample was prepared with less than and equal to 7.30% Cu/Zn MR, but tended to a spherical or nanorod structure of CuNPs densely arranged on the surface of T-ZnOw, which is prepared by Cu/Zn MRs up to 22.00%. All the compounds exhibited excellent photocatalytic activity in decomposing of MO than T-ZnOw, the photocatalytic property of the samples increased with the increasing of Cu/Zn MRs up to 7.30%, while it decreases when further increasing the Cu/Zn MRs. The Schottky barrier of the Cu/T-ZnOw compound can effectively capture photoinduced electrons from the interface and enhanced the photocatalytic property of T-ZnOw.  相似文献   

20.
The g-C3N4 was synthesized by a hydrothermal method and the g-C3N4/Ag3PO4 composites were prepared by a ordinary precipitation method. Microstructures, morphologies and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), UV–vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the Ag3PO4 nanoparticles were dispersed on the surface of the flake-like g-C3N4, and the heterojunction was formed on the interface. The g-C3N4/Ag3PO4 (2 wt%) photocatalyst presented the highest photocatalytic activity for organic dye methylene blue (MB) degradation, and its photocurrent intensity was approximately 2 times than that of the pure Ag3PO4. The g-C3N4/Ag3PO4 (2 wt%) photocatalyst also exhibited photocatalytic performance in the decomposition of colorless antibiotic ciprofloxacin (CIP). The capture experiment confirmed that holes acted as the main active species during the photocatalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号