首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前在电力行业中广泛应用的SF_6气体具有严重的温室效应,寻找一种绝缘性能优良的环保型替代气体成为研究热点。近年来,C_3F_7CN及其混合气体凭借出色的绝缘性能和环保特性得到了国内外学者的广泛关注。目前针对其放电分解机理的研究较少。首先,基于ReaxFF反应分子动力学方法和密度泛函理论,从微观层面模拟研究了C_3F_7CN/CO_2混合气体的分解机理。基于构建的C_3F_7CN/CO_2混合气体模型,研究了温度对C_3F_7CN分解过程的影响,分析了其可能的分解路径、产物类型及分布等。计算结果表明,C_3F_7CN在局部过热或放电等故障条件下分解容易产生CF_3?、C_3F_7?、C?、CF_3CFCN?、CF_2?和F?等各类自由基,上述自由基复合将产生CF_4、C_2F_6、C_3F_8、CF_3CN、CO等产物。其次,利用气体绝缘试验平台和气相色谱质谱联用仪(gas chromatography mass spectrometer,GC-MS),试验分析了其多次击穿后的分解产物。试验结果表明,混合气体多次击穿后的主要分解产物是CF_4、C_2F_6、CF_3CN。这些产物分子均具有比较好的绝缘能力,保障了C_3F_7CN/CO_2混合气体的绝缘性能不被破环。相关结论为进一步探究C_3F_7CN/CO_2混合气体的绝缘特性及协同效应等课题提供理论依据和工程指导。  相似文献   

2.
近年来,C_4F_7N(2,3,3,3-四氟-2-(三氟甲基)-丙腈)凭借优良的绝缘和环保性能得到了替代气体研究领域的广泛关注。目前针对C_4F_7N混合气体分解特性的研究较少,为明确其分解特性,文中基于ReaxFF分子动力学方法和量子化学DFT理论对C_4F_7N/N_2混合气体的分解机理进行了研究,同时利用气体绝缘性能测试平台配合气相色谱质谱联用仪对C_4F_7N/N_2混合气体多次工频击穿后的放电分解产物进行了检测。研究发现C_4F_7N/N_2混合气体的主要分解产物有CF_4、C_2F_6、C_3F_8、CF_3CN、C_2F_4、C_3F_6和C_2F_5CN,其中C_2F_6、CF_4及CF_3CN的相对含量较高;ReaxFF-MD分子动力学模拟显示CF_3,CN,F和C3F7是C_4F_7N分解形成的4种最为重要的自由基碎片。该研究成果深入揭示了C_4F_7N/N_2混合气体的分解机理,为混合气体的工程应用提供了重要参考。  相似文献   

3.
近年来,环保绝缘介质C_4F_7N/CO_2混合气体凭借优良的绝缘性能得到了广泛关注。为避免C_4F_7N/CO_2混合气体在高能放电后出现碳析出,需要加入O_2作为第二种缓冲气体。然而目前鲜有针对C_4F_7N/CO_2/O_2混合气体放电分解特性的相关报道。该文通过一系列工频击穿放电实验,利用气相色谱质谱联用仪(GC-MS)对含不同体积分数O_2的C_4F_7N/CO_2/O_2混合气体的放电分解特性进行了分析。研究发现,C_4F_7N/CO_2/O_2混合气体多次击穿后分解的主要产物有CF_4、C_2F_6、C_3F_8、CF_3CN、C2F5CN、C_3F_6、CO、COF_2、C_2N_2等,其中CF_4、CO、C_2F_6的生成量相对较高。当O_2的体积分数从0%增加到2%时,上述分解产物的生成量均出现了一定程度的下降;随着O_2的体积分数进一步升高,主要分解产物中CF_4、CO的生成量会持续下降,相反COF_2的生成量会增加,而其他分解产物的含量变化趋势不是很明显。  相似文献   

4.
气固界面的电荷积聚问题是诱发沿面闪络的重要原因,而当前C_(4)F_(7)N/CO_(2)混合气体中电荷积聚特性的相关研究还不够充分。为研究C_(4)F_(7)N/CO_(2)混合气体中表面电荷积聚特性及机理,本文通过指型电极构建极不均匀电场,测量了环氧复合材料在C_(4)F_(7)N/CO_(2)混合气体中的表面电荷分布特性;进一步的,为理清表面电荷来源及迁移特性,测量了冲击电压下C_(4)F_(7)N/CO_(2)混合气体中材料表面电位,比较了附加背板电极前后的表面电荷分布。研究表明,C_(4)F_(7)N/CO_(2)混合气体与SF_(6)中表面电位分布形态相似,均表现为高压电极附近积聚大量同极性电荷,地电极附近积聚少量异极性电荷。随着C4F7N含量升高,C_(4)F_(7)N/CO_(2)混合气体抑制电荷积聚能力增强。表面电荷来源于气体电离和高压电极注入并且随着电场强度的改变,电荷来源也发生变化,切向电场促进了电荷沿表面向更大范围的迁移。该工作对于明确C_(4)F_(7)N/CO_(2)混合气体中表面电荷积聚特性及环保型绝缘气体的推广应用具有重要意义。  相似文献   

5.
全氟异丁腈(CF_3)_2CFCN(C_4F_7N)作为SF_6替代气体引起了研究人员的广泛关注。为研究微水对C_4F_7N的分解特性的影响,本文实施了针对C_4F_7N/N_2混合气体的针-板电极交流电晕放电实验,随后利用气相色谱质谱联用仪和扫描式电子显微镜-能量色谱仪分析了C_4F_7N/N_2在微水条件下的分解特性。结果显示,C_4F_7N/N_2的主要分解气体为CO_2、CF_4、C_2F_6、C_3F_6和C_3F_8等。随着微水含量的升高,CO_2产量增加并逐渐趋于饱和;CF_4、C_2F_6和(C_3F_6+C_3F_8)等氟碳气体的产量先下降后上升;分解气体总量呈缓慢持续增长的趋势。放电后,铜板电极表面出现了沉积物,电镜扫描显示沉积物的主要元素构成为C、N、F等;当微水含量进一步增加时,铜板电极表面出现了Fe和Cr元素。  相似文献   

6.
C_4F_7N/CO_2混合气体有潜力替代SF_6气体应用于气体绝缘全封闭组合电器(GIS)或环保气体绝缘管道(GIL)等电气设备中作为绝缘电介质,掌握其绝缘性能是进行电气设备绝缘设计的基础。电气设备在实际运行中会遇到不同的环境温度,有必要研究温度变化时C_4F_7N/CO_2混合气体的绝缘性能。常温下C_4F_7N/CO_2混合气体的绝缘性能已有较多研究,但鲜见不同温度下的研究。该文研究了-35~20℃温度范围内,温度对C_4F_7N/CO_2混合气体的工频放电场强的影响规律,建立C_4F_7N/CO_2混合气体的放电场强随温度变化的计算模型。为验证计算模型,开展不同温度下的工频放电试验,采用球板电极下的放电试验得到初始充气压力0.7MPa和0.6MPa下,混合比例9%C_4F_7N/91%CO_2混合气体在不同温度下的工频放电电压,得到0.7MPa下混合比例为9%C_4F_7N/91%CO_2混合气体的液化温度约为-19℃,0.6MPa下的液化温度约为-23℃,试验结果验证了计算模型的有效性。同时发现C_4F_7N/CO_2混合气体在发生液化后,其工频放电场强随温度降低而显著降低。利用该文的计算模型研究0.6MPa和0.7MPa下不同混合比例的C_4F_7N/CO_2混合气体的工频放电场强随温度的变化,获得了不同混合比例不同温度下C_4F_7N/CO_2混合气体的工频放电场强。  相似文献   

7.
近期,CnF_2nO类物质得到了替代气体研究领域的关注,尤其是C_5F_(10)O和C_6F_(12)O,两者均具有极低的温室效应潜能指数(global warming potential,GWP)且绝缘特性优异。由于其出色的绝缘表现,国内外科研机构和公司开始关注该物质及其混合气体,目前针对其放电分解特性的研究较少。该文基于密度泛函理论从微观层面对C_5F_(10)O的稳定性及可能的分解路径展开分析,首先计算得到C_5F_(10)O的电离能等参数,并基于前线分子轨道理论确定分子结构中可能发生反应的位置。其次,分析C_5F_(10)O可能的分解途径、分解产物的形成机制并计算得到相应的能量变化。最后,利用气体绝缘试验平台对C_5F_(10)O/N2混合气体进行击穿测试,基于气相色谱质谱联用仪对击穿前后气室内气体组分进行分析,探讨分解产物的绝缘性能及放电过程中各类粒子的动态平衡过程。研究结果表明,C_5F_(10)O放电分解形成CF3CO·、C3F7·或C3F7CO·、CF3·自由基的过程最容易发生,各类自由基进一步反应将生成CF_4、C_2F_6、C_3F_8、C_3F_6、C_4F_(10)、C_5F_(12)、C_6F_(14),上述产物均具有较强的绝缘性能,且C_5F_(10)O分子与自由基间存在动态平衡过程,两者共同保障了体系的绝缘性能。试验发现随着击穿次数的增加,C_5F_(10)O各分解产物含量增加,其中CF_4、C_2F_6、C_4F_(10)的增长率高于C_3F_8、C_6F_(14),自由基更易于复合形成小分子产物。相关结论对进一步探究C_5F_(10)O混合气体的绝缘特性及协同效应等课题提供一定理论依据,同时为CnF_2nO类新型环保型介质研究提供一些借鉴。  相似文献   

8.
近几年提出的环境友好型气体绝缘介质全氟异丁腈(C3F_7CN),在介电特性和环保方面表现良好,具有替代SF_6气体的可能性。探究常用吸附剂对绝缘介质C_3F_7CN及其分解产物的吸附特性,可为实际设备中吸附剂的选择提供参考。在过热实验基础上,对比分析γ-Al_2O_3和分子筛(3A、4A和5A)对绝缘介质C_3F_7CN和缓冲气体CO_2及其混合气体分解产物的吸附特性。C_3F_7CN/CO_2混合气体在650oC下的过热分解产物主要为CO、CF_4、C_2F_6、C_2F_4、C_3F_8、C_3F_6、i-C_4F_(10)、CF_3CN、CNCN和C_2F_5CN等。实验结果表明:γ-Al_2O_3和分子筛对缓冲气体CO_2及分解产物CO和全氟碳类气体的吸附能力较弱,但能有选择地吸附腈类气体。其中,四种吸附剂均能有效吸附腈类气体CNCN,但只有γ-Al_2O_3和5A分子筛能有效吸附CF_3CN气体,γ-Al_2O_3吸附速率大于5A分子筛。此外,γ-Al_2O_3能吸附绝缘介质C_3F_7CN,故不适合用于以C_3F_7CN混合气体作为绝缘介质的电力设备中。  相似文献   

9.
为获得C_4F_7N混合气体最优缓冲气体类型,测量了均匀电场0.1~0.7 MPa下,5%~20%C_4F_7N/CO_2和C_4F_7N/N_2混合气体的工频击穿强度,并分析了2种混合气体的协同特性。基于密度泛函理论的M06-2X-D3/6-311G(d, p)方法建立并优化C_4F_7N、CO_2、N_2分子及C_4F_7N与CO_2、C_4F_7N与N_2的双分子复合物构型,并由M06-2X-D3/6-311+G(d, p)方法获得分子/复合物总能量、相互作用能和键能等。实验和理论计算结果表明,C_4F_7N/CO_2和C_4F_7N/N_2 2种混合气体绝缘强度随混合比例变化时均表现出协同效应,且2种混合气体的协同效应随C_4F_7N占比的增大而增强,同时C_4F_7N/CO_2混合气体协同效应和绝缘强度都强于C_4F_7N/N_2混合气体;C_4F_7N与CO_2双分子间的相互作用强于C_4F_7N与N_2双分子结构。研究发现,C_4F_7N混合气体协同效应与分子间相互作用存在一定的关联性,可通过计算C_4F_7N与缓冲气体分子的相互作用定性分析C_4F_7N混合气体协同效应的强弱。  相似文献   

10.
为研究C_4F_7N(全氟异丁腈)与CO_2、N_2和空气3种缓冲气体混合后作为绝缘介质替代SF_6的潜力,在均匀电场下对C_4F_7N/CO_2、C_4F_7N/N_2和C_4F_7N/空气混合气体的工频绝缘性能进行了研究,其中混合气体气压为0.1~0.7MPa、C_4F_7N占比为5%~20%。对比了含不同缓冲气体的C_4F_7N混合气体绝缘特性,分析了气压和混合比例等因素对混合气体工频击穿电压的影响。试验结果表明,C_4F_7N/CO_2和C_4F_7N/空气混合气体击穿电压随气压升高呈线性增长,而C_4F_7N/N_2混合气体在较高气压下呈微弱的饱和趋势;3种C_4F_7N混合气体的工频击穿电压随混合比例的增加大致呈线性增长。C_4F_7N/CO_2、C_4F_7N/N_2和C_4F_7N/空气混合气体相对于SF_6的绝缘强度随气压的变化并非定值,在0.4 MPa附近相对SF_6绝缘强度存在极小值。C_4F_7N/N_2混合气体在放电条件下的碳析出现象较为明显,严重时会导致C_4F_7N/N_2混合气体击穿电压大幅下降。综合考虑C_4F_7N混合气体的绝缘性能、液化温度和放电条件下的碳析出程度,CO_2和空气是C_4F_7N适合的缓冲气体。  相似文献   

11.
探索了新型环保绝缘气体C_6F_(12)O与N_2混合气体在交流电压下的击穿特性和分解特性。讨论了C_6F_(12)O与N_2在设备中使用的混合比,并在工频交流平台下进行击穿实验,探究C_6F_(12)O与N_2混合气体在准均匀场下的击穿性能并与SF6混合气体进行比较。对3%C_6F_(12)O与N_2混合气体进行100次击穿实验后采用GC-MS定性检测混合气体击穿后的分解产物,最后采用密度泛函理论计算分解产物的生成过程,分析温度对生成能量的影响并计算分解产物分子轨道间隙。实验结果表明:在0.10MPa下3%C_6F_(12)O与N_2混合气体的击穿电压约为纯N_2的1.7倍,与10%SF6与N_2混合气体的击穿电压相当。击穿后检测到的分解产物主要为CF_4、C_2F_6、C3F6、C_3F_8、C_4F_(10)和C_5F_(12)。计算表明:生成主要分解产物的反应能量随着温度升高呈现不同的变化趋势,且分解产物的分子轨道间隙值由大到小的排序依次为CF_4,C_2F_6,C_3F_8,C_4F_(10),C_5F_(12),C_3F_6。CF_4分子的轨道间隙值最大,约为12.590 eV。  相似文献   

12.
研究环保绝缘气体具有深远的社会意义。C_4F_7N、C_5F_(10)O混合气体是最有希望替代高温室效应SF_6的环保绝缘气体。对C_4F_7N/CO_2、C_5F_(10)O/C_6F_(12)O/Air混合气体的GWP值、液化性能和绝缘性能进行了详细研究。C_4F_7N/CO_2(总压7 bar,C_4F_7N分压0.466 bar)的GWP值503,是SF_6的2.13%;C_5F_(10)O/C_6F_(12)O/Air(总压8 bar,C_5F_(10)O分压0.285 bar,C_6F_(12)O分压0.100 bar)的GWP值0.33,是SF_6的0.001%。C_4F_7N、C_5F_(10)O气体沸点较高,C_4F_7N气体在-25℃环境,其饱和蒸气压为0.466 bar;C_5F_(10)O气体在-5℃环境,其饱和蒸气压为0.285 bar。C_4F_7N/CO_2、C_5F_(10)O/Air混合气体属于正协同效应气体,具有冲击特性,对负极性冲击电压更为敏感。420 k V GIS用母线在雷电冲击耐受电压1 425 kV下,最大电场强度为20.4 kV/mm;可以选择C_4F_7N/CO_2(C_4F_7N分压0.466 bar,最低功能充气总压7 bar)作为绝缘介质,满足户外GIS-25℃的低温环境要求;也可以选择C_5F_(10)O/C_6F_(12)O/Air(C_5F_(10)O分压0.285 bar,C_6F_(12)O分压0.100 bar,最低功能充气总压8 bar)混合气体作为绝缘介质,满足户内GIS-5℃的低温环境要求。研究结果为进一步研发环保型GIS提供参考。  相似文献   

13.
电亲和性气体的放电电压对不均匀电场分布较敏感,高压电气设备电极表面存在的表面粗糙度效应会凸显,从而降低气体绝缘性能。C_4F_7N/CO_2混合气体是一种有潜力的SF_6替代气体,有必要研究C_4F_7N/CO_2对不均匀电场分布的敏感特性。该文从理论上分析电极表面粗糙引起的局部电场畸变,计算电场畸变程度对C_4F_7N/CO_2绝缘性能的影响,提出采用优异值来评估C_4F_7N/CO_2混合气体对不均匀电场的耐受能力。与SF_6气体对比,发现C_4F_7N/CO_2的优异值随C4F7N含量的降低而增大;当C4F7N体积分数低于20%时,C_4F_7N/CO_2混合气体的优异值比SF_6气体的优异值大。为验证计算结果,制作粗糙电极放电模型进行C_4F_7N/CO_2混合气体和SF_6气体的放电试验,获得了C_4F_7N/CO_2混合气体和SF_6气体的优异值,与计算结果接近。若采用C_4F_7N/CO_2混合气体的设备具有与采用SF_6气体相同的绝缘性能时,分析表明当C4F7N体积分数为4%~20%范围时,SF_6气体绝缘设备中电极表面粗糙度控制值6.3μm的标准适用于C_4F_7N/CO_2混合气体设备。  相似文献   

14.
CF_3I/N_2混合气体被认为有希望取代SF6气体而应用于气体绝缘设备。为了研究CF_3I/N_2混合气体在放电后的副产物,该文基于密度泛函理论(density functional theory,DFT),运用BFGS算法建立并优化了CF_3I分子及其潜在副产物分子的结构模型,并在此模型的基础上通过GGA-PBE算法计算了副产物分子的基态总能量,得到了各分子生成反应的自由能。结果表明副产物的可能组分为C2F6、C_2F_5I和I_2。而采用色质联用法和离子色谱法分别对CF_3I/N_2混合气体直流放电实验后的气体和固体成分进行分析,结果表明气体放电后副产物的主要成分为C_2F_5I,固体副产物为I_2。同时还发现,当气体放电后,将产生少量固态I单质,这导致CF_3I气体含量减少。但经过一个较长时间,CF_3I/N_2气体绝缘性能可恢复到放电前的水平,说明在CF_3I/N_2中决定其绝缘性能的主要因素是自由基对电子的吸附性,而不是I的电负性。研究结果表明,直流电压作用下,CF_3I/N_2绝缘气体放电后可检测到的分解产物是C_2F_5I和I_2。  相似文献   

15.
CF_3I作为一种性能稳定且安全环保的强电负性气体近年来受到替代气体研究领域的关注,但CF_3I放电分解组分的微观形成机理及微氧对CF_3I放电分解组分的影响鲜有研究。为此首先基于密度泛函理论(DFT)探究了CF_3I分解产生的CF_3·、CF_2:自由基间相互反应生成C_2F_6等物质的能量变化,借助过渡态理论对反应路径中的能量变化进行了分析,获得了各分解组分的反应热及活化能;其次分析了微氧条件下CF_3I放电分解过程中的主要反应及产物;最后基于傅里叶变换红外吸收光谱法(FTIR)对CF_3I气体及CF_3I和O_2混合气体的放电分解组分进行了试验验证。研究结果表明,CF_3I放电分解产生的自由基反应生成CF4、C2F6、C2F4、C2F5I的过程无能量势垒,产生C_3F_6和C_3F_8则需要一定的活化能;微氧条件下CF_3I放电分解产生的自由基及组分分子与O·和O_2可以通过三条反应路径生成COF2;试验结果表明O_2的存在可促进消耗CF_3I,破坏其绝缘自恢复过程,使绝缘强度劣化;高气压条件下的CF_3I气体绝缘性能优于低气压,更为可靠。  相似文献   

16.
近期氟化腈和氟代酮类气体及其混合气体作为潜在的SF_6替代气体受到关注。为此针对C_4F_7N和C_5F_(10)O与CO_2混合气体的绝缘性能及其作为绝缘介质应用时的配比、压力等的选取问题开展了详细的理论研究。首先,基于已报道的C_4F_7N和C_5F_(10)O液化温度数据,通过拟合得到了两种气体的Antoine特性常数;然后,将Antoine蒸汽压方程和汽液平衡基本定律相结合,研究了C_4F_7N和C_5F_(10)O与CO_2混合气体的饱和蒸气压特性,讨论了这两种混合气体在不同温度限制下的应用方案;最后,利用文献报道的实验数据,计算得到了C_4F_7N和C_5F_(10)O与CO_2混合气体的临界击穿场强数据,进而结合饱和蒸气压特性研究了两种环保混合气体的绝缘性能及其应用的可行性。研究结果表明:C_4F_7N-CO_2混合气体在讨论的3种温度(-5℃、-15℃和-25℃)限制下所能达到的绝缘强度明显高于C_5F_(10)O-CO_2混合气体,采取适当混合比的C_4F_7N-CO_2混合气体能满足当前电力设备应用所需的环境温度要求,且绝缘性能较好,全球变暖潜能值(global warming potential,GWP)较低。如在-25℃温度限制下,5%C_4F_7N-95%CO_2混合气体约在0.65 MPa时可达到0.5 MPa下SF_6气体的绝缘强度,C_4F_7N摩尔分数低于20%的C_4F_7N-CO_2混合气体GWP值低于850。  相似文献   

17.
近年来,环保气体C_4F_7N被人们广泛研究来取代SF_6在气体绝缘设备中的地位。为较为全面地揭示不同电场分布、气压、混合比例条件下C_4F_7N/CO_2混合气体的工频击穿特性及其工程应用配置方案,计算了不同C_4F_7N混合比例、气压下C_4F_7N/CO_2混合气体的液化温度,通过不同电极形式下该气体的工频击穿试验,得到不同条件下C_4F_7N/CO_2混合气体和SF_6的击穿特性。试验发现,在电场不均匀度增大过程中,C_4F_7N/CO_2混合气体出现了击穿电压突变的N型曲线特征,SF_6也表现出类似的现象。此外,根据C_4F_7N/CO_2混合气体液化温度为–10℃的限制,当气压范围在0.3 MPa及以上且电场不均匀度为1.05、1.58、9.6、13.8和22.5时,其C_4F_7N体积分数需要分别达到9%、5%、7%、5%、5%,才能使得C_4F_7N/CO_2混合气体绝缘强度可达到SF_6绝缘强度的0.8倍;若要求C_4F_7N/CO_2混合气体绝缘强度达到SF_6的0.9,则需提高C_4F_7N体积分数至13%及以上。  相似文献   

18.
直流气体绝缘金属封闭输电线路(GIL)充SF_6混合气体或SF_6替代气体时,其绝缘性能将受到自由金属微粒的影响。本文重点针对C_4F_7N/CO_2以及SF_6/N_2混合气体,开展绝缘强度的影响分析。选用的实验气体组份为:C_4F_7N/CO_2(4%/96%)、SF_6/N_2(其中SF_6比例分别为20%、30%、50%和70%)以及纯SF_6气体,在球-碗电极直流电场下,开展微粒影响下的气隙击穿实验。提出微粒放电敏感度(DSP)的概念及定义,用以评估不同组分气体绝缘强度对金属微粒导致的局部电场强度剧变的敏感程度。实验结果表明,在0.1~0.5MPa气压范围内,不存在微粒时,4%C_4F_7N/96%CO_2绝缘强度与30%SF_6/70%N2混合气体相当;存在微粒影响时,4%C_4F_7N/96%CO_2混合气体的DSP值低于30%SF_6/70%N2混合气体的,而高于20%SF_6/80%N2混合气体的,且放电电流呈现双峰值特征。C_4F_7N/CO_2混合气体具有绝缘强度高、对微粒放电敏感度低的特性,这与C_4F_7N具有强电负性和高吸附系数有关。本文还结合微粒运动触发放电的物理模型,阐明了气隙击穿电流出现双峰特征的原因。  相似文献   

19.
由于C_4F_7N兼具优异的绝缘性能和环保特性,因此得到了国内外替代气体领域研究者的广泛关注。为了探究加入O_2后对C_4F_7N二元混合气体绝缘及分解特性的影响情况,在稍不均匀场条件下对含不同含量(即体积分数)O_2的C_4F_7N-N_2-O_2混合气体的工频击穿特性和绝缘自恢复性能进行了测试,同时基于气相色谱质谱联用仪(GC-MS)分析了击穿后混合气体的分解产物组成及含量。研究发现,在C_4F_7N-N_2混合气体中加入一定含量的O_2能够提高混合气体的工频击穿电压且有效改善混合气体自恢复性能;不含O_2的C_4F_7N-N_2混合气体在多次放电击穿后电极表面有黑色物质(碳)析出,而少量O_2的加入能够抑制固体物质碳析出;另外,O_2的加入促进了混合气体的分解,产生了CO_2、COF_2等特征产物。随着O_2含量的进一步提高,混合气体分解产生的CF_4含量显著升高,而C_2F_6、C_3F_8等产物含量降低。综合来看,实际工程应用中建议在C_4F_7N-N_2-O_2混合气体中加入4%~6%的O_2,以达到有效抑制固体物质碳析出的同时提升混合气体的绝缘性能。  相似文献   

20.
环保型绝缘介质C_4F_7N及其混合气体的热力学物性参数的研究对了解其使用范围及应用前景具有参考价值。因此,采用Riedel蒸气压方程和Raoult定律计算了不同混合配比下C_4F_7N/CO_2和C_4F_7N/N_2混合气体的饱和蒸气压;基于P-R状态方程计算了C_4F_7N/CO_2和C_4F_7N/N_2的压缩因子和密度,根据分子结构特征,采用Joback基团贡献法和Thodos法计算分析了两种混合气体的定压比热容和粘度。计算结果表明:若要气体绝缘开关设备和气体绝缘输电管道在0.5MPa下运行时绝缘介质的液化温度≤253K,混合气体中C_4F_7N摩尔分数分别应≤8%和≤10%,该摩尔分数下混合气体各自的全球变暖潜能值分别约为SF_6的2.45%和3.83%,温室效应较小。上述条件下,两种混合气体均趋于理想气体状态,压缩因子接近于1,两种混合气体中的C_4F_7N含量虽少,但对其混合气体的定压比热容贡献较大,而对粘度贡献不大。所得结果可为C_4F_7N/CO_2和C_4F_7N/N_2两种环保混合气体熄弧特性及其在GIS和GIL中的应用研究提供基础数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号