首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
模块化多电平矩阵变换器(modular multilevel matrix converter,M3C)是一种可直接实现交交功率变换的新型高压大功率拓扑,在低频输电、大功率异步电机调速及低频海上风电送出等领域具有应用前景。由于2种频率的功率耦合作用,M3C桥臂电容电压在电网电压不对称时容易失稳。为此,文中首先对不平衡输入工况下M3C桥臂功率进行了计算,推导并总结了2种不同功率平衡方法下桥臂间的功率分配规律。在此基础上,研究低频环流对桥臂功率的影响,在保证系统总有功功率平衡的前提下,提出基于低频环流的M3C桥臂电容电压平衡控制策略,避免了网侧负序电流的引入;在不平衡工况下,通过桥臂电容电压闭环控制和功率直接补偿实现电容电压的快速平衡。所构造的低频环流仅在换流器内部流动,不影响M3C输入输出侧的解耦运行。最后在MATLAB中搭建了220 kV/400 MW M3C系统模型,验证了所提控制策略的有效性。  相似文献   

2.
低频输电作为一种新型输电技术,在海上风电送出、新能源场站送出等多个场景具有良好的应用前景。但在不对称故障下,故障侧功率不对称将严重影响模块化多电平矩阵变换器(modular multilevel matrix converter, M3C)的电容电压均衡,对低频输电系统安全稳定运行产生不利影响。为此,提出了一种可实现低频输电系统不对称故障穿越的M3C电容电压均衡控制策略。首先,介绍M3C的系统结构及双αβ0数学模型,并分析不对称故障下电容电压不均衡的原因。然后,基于双αβ0数学模型针对输电线路不对称故障情况计算桥臂功率不均衡分量的表达式,通过M3C功率平衡关系引入电流补偿分量,消除桥臂功率的不均衡,并得到适用于不对称故障的环流控制目标,进而通过环流控制实现故障下M3C电容电压的均衡。最后,搭建基于M3C的低频输电系统仿真模型验证所提控制方案的可行性和有效性。  相似文献   

3.
基于全桥结构的模块化多电平矩阵变换器(M3C)提出了三相柔性低频输电系统的分频分层控制策略.从双频功率耦合的机理出发,分析了M3C的工作原理,在旋转坐标系下分别实现了工频侧和低频侧的控制.在保证系统总有功功率平衡的前提下,通过在工频侧注入负序电流实现功率模组电容电压的相间均衡,在静止坐标系下通过桥臂内工频环流控制实现功率模组电容电压的相内均衡,所提的层次化控制可实现系统对称及不对称条件下基于M3C的柔性低频输电系统的稳定运行.根据对相单元瞬时功率的分析,提出仅用2种不同频率的滑差滤波器以确保功率模组电容电压偏差控制的暂稳态特性.搭建了双端柔性低频输电系统仿真模型,验证了所提控制策略的有效性和可行性.  相似文献   

4.
提出了一种模块化多电平矩阵变换器(M3C)输入输出频率相近时的低频运行控制策略。方案采用桥臂电流反馈控制,实现输入输出侧电流和内部环流的三重控制,并约束内部环流不影响输入输出侧;电压外环采用层次化电容电压控制策略,包括M3C总电容电压控制、输入输出侧相间平衡控制以及桥臂间平衡控制,其中桥臂间平衡控制通过叠加高频环流及零序电压实现,并引入PR控制器实现差频纹波的闭环抑制。该方案适用于输入输出侧频率相同的特例工况。通过OPAL-Rtlab半实物实验验证了该方案的可行性和有效性,以及优良的动静态特性。  相似文献   

5.
该文提出分频海上风电系统的不对称故障穿越控制策略。首先,介绍分频海上风电系统的基本结构与运行方式。其次,根据关键变频设备模块化多电平矩阵式换流器(modular multi-level matrix converter,M^(3)C)的数学模型,揭示电网电压不对称时M3C的运行特性,并提出分频海上风电系统的故障穿越控制策略。该策略在M3C双αβ0坐标变换控制的基础上,改进桥臂间均压控制策略,并引入M^(3)C-风电场联合电压–频率–功率下垂控制实现风电场减出力。最后,在MATLAB/Simulink中搭建分频海上风电系统电磁暂态仿真模型,对所提出的控制策略进行验证。仿真结果表明:提出的故障穿越控制策略能够在保证M3C运行安全的同时,满足风电场功率外送需求,实现风电场对工频系统的无功支撑目标。  相似文献   

6.
低频海底电缆发生不对称故障时存在模块化多电平矩阵换流器(M3C)功率器件电流越限、非故障相过电压风险,严重影响海上风电低频输电系统(LFTS)的安全运行。针对上述问题,在充分发挥M3C高可控性的基础上,提出了一种适用于海底电缆不对称故障的控制策略:根据故障严重程度动态调整M3C低频侧电压,防止非故障相过电压;各子换流器通过抑制负序电流限制短路电流上升,保护功率器件免受过电流危害;计及控制策略的影响,通过建立系统故障等值模型进行故障分析。在PSCAD/EMTDC中搭建了海上风电LFTS模型,仿真结果验证了所提控制策略和故障分析方法的有效性,其能够实现低频侧不对称故障下系统的稳定运行。  相似文献   

7.
分频输电(fractional frequency transmission system,FFTS)结合高压交流和高压直流输电的优势,是极具发展前景的大规模、中远海风电输送方案。模块化多电平矩阵变换器(modular multilevel matrix converter,M~3C)以其控制性能好、易于冗余扩展等优点,在海上风电FFTS中备受关注。然而,M~3C-FFTS中不同频率的输入和输出直接耦合,给系统建模与控制带来了挑战。为解决此问题,该文提出一种适用于M~3C的混合建模方法及相应的控制策略。对各子换流器的3个桥臂进行差模–共模分解,实现输入–输出解耦;对各子换流器桥臂功率进行αβ0建模,并分析桥臂功率低频分量与差模电流基波分量的约束关系。在此基础上,提出一种新型的M~3C-FFTS系统控制策略,通过构造差模电流的基波正序有功、负序有功和无功分量实现子模块电容电压平衡控制。所构造差模电流仅包含输入工频分量,显著降低控制策略的复杂度。最后,在220k V/400MW M~3C-FFTS中验证所提建模方法与控制策略的有效性。  相似文献   

8.
近年来,基于全桥功率模组的模块化多电平矩阵变换器(M3C)的海上风电低频输电系统(LFTS)发展迅速,具有广阔的应用前景。为保障电网的安全运行以及降低海缆的过压风险,经LFTS并网的风电机组必须具备故障穿越能力。研究风电机组经LFTS并网时的故障穿越能力,针对工频系统故障导致M3C传输有功受限,使得工频、低频系统功率不平衡,造成低频系统过电压问题,设计了一种基于多绕组移相变压器的宽频宽压电源系统(宽频电源)。当工频系统故障引起M3C闭锁时,通过宽频电源接管低频侧电压控制,实现风电并网系统故障穿越。搭建了35 kV/11 MW海上风电系统的PSCAD模型,仿真实验结果表明了所提方法的正确性,具有良好的LFTS工程应用前景。  相似文献   

9.
模块化多电平矩阵变换器(M3C)作为一种新型拓扑具有诸多优点,但其控制变量较多、控制结构复杂。文中首先对M3C系统的工作原理进行了分析,并建立了其数学模型;在此基础之上,分析并研究了M3C系统的输出电压和电流、桥臂电流、桥臂能量均衡、桥臂子模块电容电压等电气参量的控制策略,同时给出了M3C系统交流侧电压、电流的输入、输出整体控制策略,以实现M3C的稳定运行,且具有较好的动、静态特性。最后,通过建立M3C系统结构的仿真模型及实验平台对控制方法进行仿真和实验,验证了M3C系统控制策略的可靠性及稳定性。  相似文献   

10.
通过特殊矩阵结构下各桥臂级联子模块的瞬时功率特性分析,提出了一种基于子模块瞬时功率跟随的三相六桥臂模块化多电平矩阵变换器控制策略。桥臂间电容电压均衡控制环采用电容电压直流量偏差值及差频纹波的混合反馈,实时跟随瞬时功率幅值包络线注入高频共模电流,经由同一闭环实现二者的整体控制,可解决桥臂间无功分配差异和差频电压波动对变换器应用范围的限制;在单一环流路径约束下,叠加输出频率环流调节桥臂间非零序有功偏差,叠加输入频率环流调节相间平衡,环流闭环合成方式不影响控制独立性且易于实现。桥臂电流控制环可实现交流两侧端口电流及内部环流的解耦控制,无需复杂的矢量变换。最后通过不同工况实验验证了该方法的有效性。  相似文献   

11.
分频输电海上风电汇集输送具有经济技术优势而受到广泛关注,其核心装置为交交变频器,每个工频与低频的输电回路均需要一组高压大容量的级联型变换器。为了提高拓扑的复用度,减少装置体积,并降低器件使用数量,提出一种将各自独立的变换器以器件复用的形式集成为1个三端口九边形变换器。根据其拓扑的数学建模,分析桥臂的功率特性,提出对应的控制策略以实现3个端口能量交互,与变换器互联的3个端口的能量通过桥臂环流传递能量,桥臂功率控制抑制其功率常量保证了变换器的正常运行,端口功率控制使风电场能量回馈电网。最后,在RT-LAB仿真平台验证集成拓扑的可行性与控制策略的有效性。  相似文献   

12.
基于模块化多电平矩阵变换器(M3C)的低频输电系统(LFTS)在海上风电送出、城市电网及远距离输电相关领域应用潜力巨大。为研究LFTS启动过程及相关控制策略,实现M3C在无电压电流冲击状态下将换流站连接到低频输电线路,文中提出一种无扰动并网的启动方法。首先,分析LFTS结构及工作原理。然后,以双端LFTS为对象,分析M3C子模块选取原则以及充电过程。利用电容处于额定电压时闭锁M3C不与低频电网交换功率的特性,通过灵活控制M3C以及合理设计启动逻辑,无须新增检同期装置及控制算法,可解决LFTS启动时易出现的过压过流问题。最后,搭建实时数字仿真系统(RTDS)进行验证,仿真结果表明了所提控制策略的正确性,各换流站连接到低频输电线路时无电压电流冲击,工程应用前景较好。  相似文献   

13.
随着海上风电机组单机容量的不断增加,传统低压两电平背靠背变流器存在额定电流过大、解揽困难等问题,难以满足10~20MW大型海上风电机组功率变换需求。为此,提出了一种基于瞬时功率聚合传输的中压大容量级联H桥风电变流器拓扑结构。该拓扑利用四端口DC/DC变换器进行电气隔离。并给出了一种基于瞬时功率聚合传输的控制方法,将级联H桥三相H桥单元的低频脉动功率进行聚合传输,消除级联H桥的直流侧低频脉动电压。相比于常规级联H桥风电变流器,所提拓扑不需要多绕组工频变压器隔离,并且可以大幅降低所需的低频滤波电容,具有功率密度高、成本低、可靠性高(直流滤波电容)的优势。最后搭建了小功率模拟实验平台,验证了所提拓扑及控制策略的有效性。  相似文献   

14.
模块化多电平矩阵式变换器(modular multilevel matrix converter,M3C)是一种可实现直接交交功率变换的新型拓扑,在未来高电压大功率异步混联系统中有着广阔的应用前景,因而对其数学模型及控制策略的研究具有十分重要的意义。论文通过对M3C换流系统的3个子换流器分别进行αβ0坐标变换,发现对称运行时桥臂中的非零序分量只与输入侧电气量有关,而桥臂中的零序分量只与输出侧电气量有关。基于此结论,论文首次提出了对M3C桥臂中电压、电流的非零序分量和零序分量分别进行输入频率、输出频率的dq旋转坐标变换,推导出了基于双dq坐标变换的M3C数学模型。该模型实现了系统输入输出两种交流频率分量的解耦,并将所有的交流电气量转换为直流量。在此基础上,论文提出了相应的矢量控制方案,该方案中所有的被控量在稳态时都是直流量,物理概念清晰,控制结构简单,比以往文献在αβ0坐标系下的控制方案更易实现控制的无静差特性。最后论文在Matlab平台上搭建了M3C换流系统模型并采用文中的控制方案进行仿真研究,仿真结果验证了所提数学模型的正确性和控制策略的优越性。  相似文献   

15.
不平衡电网下模块化多电平换流器(MMC)存在三相直流环流不均衡问题,易导致相间电流应力和热应力差异,降低其在不平衡工况下安全运行能力。该文从桥臂功率角度分析不平衡电网下三相MMC直流环流不均衡现象和基于零序电压注入的直流环流均衡机理。提出一种零序电压注入的直流环流均衡方法,通过网侧电流与直流环流偏差量计算得到零序电压相位,经过比例谐振控制器生成零序电压注入量,进而实现直流环流的快速、有效均衡。在所提出的控制策略的基础上,研究该方法对MMC桥臂电流峰值、有效值及子模块电容电压纹波的影响规律。仿真与实验结果验证了该文理论分析与控制策略的有效性。  相似文献   

16.
作为电能变换的关键环节,高电压大功率交交变流器在海上风电、远距离分频输电及海底输配电系统建设等低频输配电场合具有非常重要的作用。文中提出一种新的Y型大功率模块化多电平变流器(Y modular multilevel converter,Y-MMC)拓扑,只需6个等效桥臂即可实现直接交交功率变换,输出电压波形质量和功率特性均表现良好,其结构简单对称,且不存在环流。针对Y-MMC拓扑建立其dq坐标下的动态数学模型,实现了系统输入输出两种交流频率分量的解耦,在此基础上给出相应的控制策略,包括内环电流控制和外环功率控制,其物理概念清晰、控制结构简单、控制性能良好。进一步,在控制方案中引入无功分配系数,推导其与桥臂稳态调制度之间的解析关系式,并给出在对应优化目标下分配系数的最优解。Matlab/Simulink平台下的一系列仿真结果验证了所提出Y-MMC拓扑和数学模型的正确性及其控制策略的有效性。  相似文献   

17.
已有模块化多电平变流器(MMC)控制策略大多采用单一子模块电容电压参考给定的控制方式,存在无法分别控制不同桥臂子模块电容电压等不足。提出一种基于模型预测控制的MMC桥臂能量控制策略,通过引入桥臂能量共模分量和差模分量控制,实现各桥臂子模块电容电压的灵活控制;同时,基于MMC的暂态数学模型设计相电流及环流模型预测控制器,并引入电流误差反馈滚动优化,有效地实现了外部相电流和内部环流的解耦控制,使环流控制器具有能灵活实现环流抑制和环流注入的特性,且对系统参数不敏感。仿真结果验证了所提控制策略的正确性和有效性。  相似文献   

18.
低频输电技术兼具高压交流及高压直流输电技术的优势,具有良好的发展前景。但当系统发生不对称故障时,子换流器间电容电压均衡被破坏,影响低频输电系统的安全运行。鉴于此,提出了一种(modular multilevel matrix converter, M3C)不对称故障穿越控制策略。该方案既能在一定程度上限制短路电流,又能平衡子换流器间电容电压,有效提高M3C不对称故障穿越能力。首先介绍M3C的拓扑和工作原理,分析M3C不对称故障期间的运行特性。进而在dq坐标系下推导故障侧电压电流,计算M3C故障侧有功功率表达式并对其中的直流分量部分进行提取。通过将直流分量不均衡抑制为零的方式确定负序电流参考值,用以实现故障侧的负序控制。最后,搭建基于M3C的低频输电系统模型,通过仿真验证了所提方案的有效性和可行性。  相似文献   

19.
三相四桥臂(3P4L)逆变器在三相三桥臂逆变器的基础上引入第四桥臂,使得三相能够解耦控制并具备带不对称负载能力。多个逆变单元共输入、输出方式并联,能够实现功率扩容,但同时也带来并联单元之间的环流问题。而3P4L由于其独特的拓扑结构,其并联控制策略较单相或三相三桥臂逆变器并联更为复杂。在基于双闭环平均电流均流控制的并联3P4L逆变器控制策略基础上,建立并联系统的小信号模型,并由此获得并联桥臂的虚拟输出阻抗模型。分析控制环路以及主电路参数与虚拟输出阻抗的关系,根据分析结果指导环路与主功率器件的参数设计,达到抑制并联桥臂环流、提高并联单元均流性能的目的,最后提出基于虚拟输出阻抗分析法的并联环流抑制方法,通过仿真和实验验证了该方法的正确性。  相似文献   

20.
基于模块化多电平变换器拓扑的电池储能系统(Modular Multilevel Monverter based Battery Energy Storage System, MMC-BESS)可以同时输出有功、无功功率,适用于中高压、大功率的新能源并网场合。为解决储能单元的差异导致其荷电状态(State of Charge, SOC)不均衡的问题,提出了一种电池SOC三级均衡控制策略。首先针对各相间SOC差异,通过控制桥臂环流直流分量改变每相功率,实现了各相SOC均衡。其次针对同相内上下桥臂SOC差异,通过控制桥臂环流基波分量改变上下桥臂功率,实现了每一相内上下桥臂SOC均衡。最后针对同一桥臂内子模块SOC差异,通过重构调制波改变子模块功率,实现了所有子模块SOC均衡。实验结果验证了该控制策略的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号