共查询到20条相似文献,搜索用时 23 毫秒
1.
Mohammad Abshirini Mrinal C. Saha Laura Cummings Thomas Robison 《Polymer Engineering and Science》2021,61(7):1943-1955
Porous polydimethylsiloxane (PDMS) framework with adjustable pore structures has been fabricated by polymerization of the continuous phase in the emulsion templates. Different types of surfactants, including nonionic (Triton X-100), cationic (Benzalkonium chloride), anionic (sodium dodecyl sulfate), and silicone-based block copolymer were used to stabilize the water-in-oil emulsion system. Deionized water with a wide range of internal phases varying from 10% to 60% by weight was employed to make the low internal phase emulsion and medium internal phase emulsion. The effect of surfactant type, surfactant concentration, and the internal phase volume on the stability of the emulsion, pore morphology, and pore size distribution was explored. The stability of the emulsion was investigated by comparing the pore morphology of the cured sample at different set times, such as 0, 6, and 72 h. Scanning electron microscopy was employed for the characterization of the porous structures. The image analysis was conducted, and the pore size distribution, porosity, and open-cell ratio of each sample were calculated. Interconnected pores have been seen in the porous PDMS made from emulsions with an internal phase larger than 30%. The results demonstrated that the frequency of open-cell pores and the pore size is dependent on the surfactant types. 相似文献
2.
Aimin Xiang Zhongjie Du Qinghua Zeng Chen Zhang Hangquan Li 《Polymer International》2005,54(10):1366-1370
This paper presents recent efforts on the preparation of flexible polyhedral particles via concentrated emulsion templating polymerization in which the hydrophilic monomer (acrylamide) and hydrophobic monomer (butyl acrylate) are polymerized simultaneously in the continuous and dispersed phase, respectively. Such templating polymerization has been enhanced in our systems owing to the introduction of acrylamide monomer and their higher polymerization rate in continuous phase as compared with butyl acrylate in dispersed phase. Diffusion between the different phases was also inhibited. Furthermore, the stability of the concentrated emulsion and the molecular weight of the produced poly(butyl acrylate) were found to be significantly affected by the amount of redox initiator. The morphology of the particles could be controlled by varying the volume fraction of the dispersed phase and the polyhedral particles were achieved at higher volume fraction. Copyright © 2005 Society of Chemical Industry 相似文献
3.
4.
Xuehui Gong Peipei Yang Kristen Rohm Yi Zhong Boran Zhao Ica Manas-Zloczower Harihara Baskaran Donald L. Feke 《应用聚合物科学杂志》2021,138(30):50739
A technique to fabricate hollow fibers with porous walls via templating from high internal phase emulsions (HIPEs) has been demonstrated. This technique provides an environmentally friendly process alternative to conventional methods for hollow-fiber productions that typically use organic solvents. HIPEs containing acrylate monomers were extruded into an aqueous curing bath. Osmotic pressure effects, manipulated through differences in salt concentration between the curing bath and the aqueous phase within the HIPE were used to control the hollow structures of polyHIPE fibers. The technique was used to produce porous fibers (with millimeter-scale diameters and micron-scale pores) having a hollow core (with a diameter of 50%–75% of the fiber diameter). Two potential applications of the hollow fibers were demonstrated. In vitro drug release studies using these hollow fibers show a controlled release profile that is consistent with the microstructure of the porous fiber wall. In addition, the presence of pores in the walls of polyHIPE fibers also enable size-selective loading and separation of functional materials from an external suspension. 相似文献
5.
Michael S. Silverstein Huiwen Tai Anatoly Sergienko Yulia Lumelsky Svet Pavlovsky 《Polymer》2005,46(17):6682-6694
Typical polyHIPE (porous polymers from high internal phase emulsions) have a cellular structure with volume fractions from 0.2 to 0.04, cell diameters from 15 to 25 μm and intercellular pore diameters from 0.5 to 10 μm. Unique interpenetrating polymer networks synthesized within the polyHIPE exhibited enhanced mechanical properties and an extended temperature range for damping. Hybrid polyHIPE that combine an inorganic polysilsesquioxane network with an organic polystyrene network exhibited superior high temperature mechanical properties and enhanced thermal stability. A nanoscale porosity in the cell walls, produced through the addition of a porogen to the HIPE, reduced the density and significantly enhanced the specific surface area. Porous silica monoliths with silica volume fractions of as low as 0.02 were produced through the pyrolysis of hybrid polyHIPE. PolyHIPE coated with an intrinsically conducting polymer exhibited reversible and repeatable changes in conductivity on exposure to acetone vapor, demonstrating their potential as sensor materials. 相似文献
6.
设计合成了一种包含氧化石墨烯(GO)片层、聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶球体和PNIPAM链段的复合结构水凝胶。通过控制聚合时间得到负载双键且粒径不同的PNIPAM微凝胶,将其作为交联点与N-异丙基丙烯酰胺(NIPAM)聚合,GO作为纳米填料掺入水凝胶体系,GO片层上的含氧基团与NIPAM上的胺基产生氢键物理交联。此方法制备的复合水凝胶同时具有温度敏感和近红外光敏感特性,通过改变GO浓度、微凝胶的合成时间、NIPAM浓度等条件,水凝胶的光敏感性和温度敏感性得到提升。相比于传统PNIPAM水凝胶,此种复合水凝胶能够对光响应,实现非接触式控制形变,且响应速率快、响应程度高,可应用于光控开关等领域。 相似文献
7.
Novel thermo‐ and pH‐responsive hydrogels based on amphiphilic polyaspartamides possessing a lower critical solution temperature (LCST) and a volume‐phase transition were prepared and characterized. The polyaspartamide derivatives were synthesized from polysuccinimide, which is the polycondensate of L ‐aspartic acid monomer, through successive ring‐opening reactions using hydrophobic 2‐diisopropylaminoethylamine and hydrophilic ethanolamine. The amphiphilic copolymer was then crosslinked with hexamethylene diisocyanate to afford the corresponding gel. The LCST of the copolymer in an aqueous solution was varied by changing both the graft composition and pH of the medium. The crosslinked gels showed stimuli‐responsive behavior, with their degree of swelling and porous structure morphology changing with temperature and pH. In addition, hydrolytic degradation depending on the crosslinking density of the hydrogel was examined. Copyright © 2009 Society of Chemical Industry 相似文献
8.
The isothermal kinetics curves of the swelling of a poly(acrylic acid) hydrogel in buffer solutions of different pH values (5, 7, and 9) at temperatures ranging from 30 to 40°C were determined. The possibilities of applying the Fick kinetics model and the Peppas equation were examined. It was found that the applicability of these models were limited. The kinetics model of a first‐order chemical reaction was found to describe the swelling kinetics of the PAA hydrogel in all the investigated buffer solution at all the investigated temperatures. Swelling kinetics is determined by the rate of expansion of the network. The kinetic parameters (Ea, ln A) of the swelling of the PAA hydrogel in buffer solutions of different pH values were determined. The activation energy and the pre‐exponential factor of the swelling of the PAA hydrogel in buffer medium decreased with increasing pH value of the swelling medium. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
9.
This review summarizes the background and recent advances of block copolymer stabilized oil‐in‐oil emulsions. For non‐polymerizable emulsions which have promising application possibilities for biomedical and cosmetic formulations, it is shown that tailor‐made block copolymers are by far the most efficient stabilizers with respect to low molecular weight surfactants. The characteristic features of oil‐in‐oil emulsions comprising one polymerizable phase are described. These types of non‐aqueous emulsions are of interest as nanoreactor systems for the polymerization of moisture‐sensitive monomers or catalysts. Furthermore they are the starting point of novel heterophase polymerization processes for the preparation of sterically stabilized polymer particles, as well as of ‘liquid‐filled polymeric materials’. The concept of oil‐in‐oil emulsions is finally extended to those systems where the two phases are polymerizable by distinct polymerization mechanisms. This approach could offer attractive possibilities for the development of special coatings with neither water nor solvent evaporation in their drying or curing step. Copyright © 2011 Society of Chemical Industry 相似文献
10.
A polyelectrolyte complex hydrogel, poly (N,N‐dimethylaminoethyl methacrylate/acrylic acid‐co‐acrylamide) hydrogel designed as PDMEAA, was prepared by the free radical copolymerization in aqueous solutions. Without chemical crosslinker, PDMEAA hydrogel network was formed by electrostatic attraction of the proton‐transfer between acrylic acid and N,N‐dimethylamino ethyl methacrylate. Since the electrostatic attraction could be weakened by the application of electric field, PDMEAA hydrogel was decomposed under contacted electric field. Various factors such as gel composition, the species and concentration of electrolytes, voltage, and the experimental set‐ups, could effect the decomposing process of PDMEAA hydrogel. In CaCl2 and MgCl2 solutions, PDMEAA hydrogel had no change under electric field. And in high concentration of NaCl and Na2SO4 solutions, PDMEAA hydrogel has been eroded linearly with the increasing time applied electric field. In low concentration of NaCl and Na2SO4 solutions, however, a swelling process was found before the erosion. The stimuli‐responsive mechanism was investigated through scanning electron microscope (SEM) and gel permeation chromatography (GPC). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
11.
以聚乙烯醇(PVA)、海藻酸钠(SA)、活性炭、硼酸和氯化钙为原料,制备复合水凝胶微生物固定化载体材料,分析了离子在水凝胶膜中的扩散渗透机理,采用池膜法测定水凝胶的NH+4、NO-2、NO-3离子扩散性能。结果表明,在PVA、SA、活性炭含量分别为4%、2.0%及0.2%时,以5%的氯化钙的饱和硼酸溶液为交联剂,交联时间15 min的条件下制备的固定化脱氮微生物载体传递性能最佳。复合水凝胶平衡溶胀度、扩散系数随PVA浓度升高而增大,随SA浓度升高溶胀度降低,离子扩散系数起初随SA浓度升高而升高,随后出现拐点。3种无机氮离子在水凝胶中的传递速率依次为NH+4>NO-2>NO-3,遵从离子有效截面积小,传递速率大的规律。改变水凝胶制备条件、原料配比对NO-2、NH+4的渗透系数影响较大,而对NO-3影响较小。 相似文献
12.
Kuilin Deng Hua Tian Pengfei Zhang Haibin Zhong Xiaobo Ren Haijun Wang 《应用聚合物科学杂志》2009,114(1):176-184
In this study, a novel pH–temperature‐responsive copolymer was first synthesized by the radical copolymerization between HPA (2‐hydroxypropyl acrylate and 2‐hydroxyisopropyl acrylate) and AMHS (aminoethyl methacrylate hydrochloric salt). The molecular structure of the corresponding copolymer has been confirmed by 1H‐NMR and FTIR. The lower critical solution temperature of the resulting copolymer exhibited a considerable dependence upon the ratio of monomers and pH value in the medium. On the basis of the copolymer, a hydrogel as drug release carrier was prepared via the introduction of a crosslinker, N,N′‐methylenebisacrylamide. The swelling behaviors of hydrogel in the different pH value, temperature, and NaCl concentration have indicated that the hydrogel showed a remarkable phase transition at 31.5°C. The swelling ratio was increased with an increasing of pH value, especially in the greater pH values. By the use of caffeine as a model drug, we investigated the caffeine‐controlled release from hydrogel systematically as a function of pH value, temperature, and crosslinker content. The caffeine release was sensitive to the temperature. Only 55% caffeine was released from the hydrogel at room temperature, whereas ~ 92% caffeine diffused into the medium at 37°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
13.
BACKGROUND: Stimuli‐responsive hydrogels are typically obtained from non‐biodegradable monomers. The use of biodegradable crosslinkers can overcome this limitation. In this context, the main aim of this work was to use modified polycaprolactone as a crosslinker in the preparation of pH‐responsive hydrogels based on N‐isopropylacrylamide and methacrylic acid to give poly[(N‐isopropylacrylamide)‐co‐(methacrylic acid)] (P(N‐iPAAm‐co‐MAA)). RESULTS: Poly(caprolactone) dimethacrylate macromonomer was synthesized and successfully employed as crosslinker with various ratios in the synthesis of well‐known pH‐responsive hydrogels of P(N‐iPAAm‐co‐MAA). The swelling properties of these degradable hydrogels were investigated. They practically do not swell at pH = 2, but exhibit a very high swelling capacity in distilled water and in solutions of pH = 7. In addition, degradation studies at pH = 12 showed that the hydrolysis of the ester groups in the polycaprolactone chains produces, after a relatively short time, the total solubilization of the polymer chains. CONCLUSION: The hydrogels under study have certain characteristics that could make them good candidates for use as matrices in controlled drug delivery. On the one hand, they do not swell in acid pH solution (stomach conditions) but they swell extensively at neutral pH. On the other hand, they became rapidly water soluble following degradation. Copyright © 2009 Society of Chemical Industry 相似文献
14.
Xiaojing Zhang Chong Li Yuelei Hu Ruixue Liu Linghao He Shaoming Fang 《Polymer International》2014,63(12):2030-2041
Octavinyl polyhedral oligomeric silsesquioxane (OVPS) is used as the crosslinker instead of N,N′‐methylenebisacrylamide (BIS) to copolymerize with 2‐(dimethylamino)ethyl methacrylate (DMAEMA) or DMAEMA and N‐isopropylacrylamide (NIPAM) to prepare hybrid hydrogels: P(OVPS‐co‐DMAEMA) and P(OVPS‐co‐DMAEMA‐co‐NIPAM). The prepared hydrogels are transparent and show dual response to temperature and pH. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis and tensile tests. Their mechanical properties, swelling ratio, deswelling and reswelling behaviors as well as drug release properties were investigated. The results indicate that OVPS can be incorporated into polymer networks in proportion to feed ratios. The P(OVPS‐co‐DMAEMA) hydrogel exhibits more homogeneous interior structure, higher swelling ratio and faster response than the conventional hydrogel prepared with BIS. Moreover, the incorporation of OVPS enhances the compression and tensile properties of the hydrogels. The feed ratios of OVPS and NIPAM have a great effect on volume phase transition temperature, thermal sensitivity, swelling behavior, mechanical properties and drug release properties of the hybrid hydrogels. The prepared dual‐responsive OVPS‐containing hydrogels are expected to be used as biomedical materials in drug release and tissue engineering. © 2014 Society of Chemical Industry 相似文献
15.
Novel amphiphilic, thermo‐ and pH‐responsive polyaspartamides showing both double‐responsive (pH and temperature) behavior and a sol‐gel transition were prepared and characterized. The polyaspartamide derivatives were synthesized by the successive aminolysis reactions of polysuccinimide using both hydrophobic N‐alkylamine (laurylamine, octylamine, hexylamine) and hydrophilic N‐isopropylethylenediamine. The composition of each component was analyzed by 1H NMR. At the intermediate composition range, the system showed a lower critical solution temperature behavior in water. The transition temperature (pH dependent) could be modulated by changing the alkyl chain length and graft composition. The temperature dependence of the nanoparticle size distribution of the polyaspartamide derivatives was also examined. The critical micelle concentration of the copolymers in a phosphate‐buffered saline (pH 7.4) solution ranged from 6 to 20 μg/L. In addition, physical gelation, i.e., a sol‐gel transition, was observed in a concentrated solution. These novel double‐responsive and injectable hydrogels have potential biomedical applications such as drug delivery systems and tissue engineering. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
16.
An electrically responsive hydrolyzed polyacrylamide‐grafted‐sodium alginate (H‐PAAm‐g‐SA)‐based membrane‐controlled transdermal drug delivery systems were developed and evaluated. The grafting reaction was confirmed by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. On application of electric stimulus, the swollen H‐PAAm‐g‐SA hydrogel was deswelled in the vicinity of electrodes. The drug release was greater in the presence of electric stimulus when compared with passive diffusion, and it was found to be dependent on the applied electric current strength, concentration of H‐PAAm‐g‐SA copolymer in the reservoir, and cross‐link density of rate‐controlling membrane. A pulsatile pattern of drug release was observed when the electric stimulus was switched “on” and “off.” The skin histopathology study suggested that, after application of an electrical stimulus, changes were in the structure of stratum corneum. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
17.
Juseung Yang Geundo Cho Tai‐Gyu Lee Bumsang Kim 《American Institute of Chemical Engineers》2011,57(7):1919-1925
For a first step in the development of an intelligent delivery system for a nonapeptide as an α‐MSH antagonist, pH‐responsive P(MAA‐co‐EGMA) hydrogel microparticles were prepared and their feasibility as intelligent delivery carriers was evaluated. There was a drastic change in the swelling ratio of P(MAA‐co‐EGMA) microparticles at a pH of around 5 and as the MAA amount in the hydrogel increased, the swelling ratio increased at a pH above 5. The loading efficiency of the nonapeptide at pH 7 increased with the amount of Methacrylic acid (MAA) in the hydrogel and at pH 2, where the electrostatic attraction was greatest, a high loading efficiency was not obtained because of the low swelling ratio of the hydrogel. The P(MAA‐co‐EGMA) microparticles demonstrated a pH‐sensitive release behavior for the nonapeptide. In addition, the P(MAA‐co‐EGMA) microparticles showed a protective ability for the nonapeptide and preserved the stability of the nonapeptide. © 2010 American Institute of Chemical Engineers AIChE J, 2010 相似文献
18.
Chanon Sansuk Sopitcha Phetrong Thitarat Prathumsuwan Insik In Peerasak Paoprasert 《Polymer International》2017,66(12):1864-1872
We investigated the synthesis of a pH‐responsive graft copolymer of natural rubber and 4‐vinylpyridine. The grafting reaction was carried out using deproteinized natural rubber (DPNR) latex, with potassium persulfate as a free radical initiator. The pH responsiveness of the graft copolymer was investigated using water swelling and contact angle measurements, and was compared with that of pure DPNR. The graft copolymer was found to become responsive in solution at a pH of around 4. Indigo carmine adsorption studies identified the Langmuir isotherm, suggesting monolayer coverage. The adsorbed indigo carmine, a model anionic drug, and carbon dots, an emerging nanosized fluorophore, could be released from the graft copolymer by lowering the pH of the solution. The graft copolymer was tested as a heavy metal adsorbent, and demonstrated selectivity to copper(II) ions. The graft copolymer of 4‐vinylpyridine and DPNR developed in this study is therefore a multifunctional, pH‐responsive material with a wide range of potential applications, including sensing and catalysis, as a biomedical material and as an adsorbent. © 2017 Society of Chemical Industry 相似文献
19.
In this article, a redox-responsive poly(ionic liquid) (redox-PIL) hydrogel Poly(1-vinyl-3-propionate imidazole phenothiazine sulfonic acid)-chitosan [Poly(VPI+PTZ-(CH2)3SO3−)-CS] was produced by using chitosan (CS) crosslinking with redox-PIL Poly(1-vinyl-3-propionate imidazole phenothiazine sulfonic acid [Poly(VPI+PTZ-(CH2)3SO3−)]. The incorporation of redox-active counter anions 3-(phenothiazine-10-yl) propane 1-sulfonic acid anions (PTZ-(CH2)3SO3−) into cationic PIL-polyimidazole rendered Poly(VPI+PTZ-(CH2)3SO3−) with electron catalytic ability, ionic conductivity, and electron conductivity. Poly(VPI+PTZ-(CH2)3SO3−)-CS combines the properties of hydrogel and redox-PIL, thus offering intrinsic porous conducting frameworks and promoting the transport of charges, ions, and molecules, leading hydrogel with excellent electrochemical properties. The crosslinking occurrence of Poly(VPI+PTZ-(CH2)3SO3−) and CS resulting from the synthetic process of hydrogel was verified by differential scanning calorimetry and thermogravimetric analysis. A three-dimensional polymer network hydrogel with good biocompatibility and permeability was formed after crosslinking. In addition, only 64% weight loss within 600 °C was observed in Poly(VPI+PTZ-(CH2)3SO3−)-CS representing its thermally stable performance. When used as an electrochemical sensor, the hydrogel-modified gold electrode improved the electrocatalytic oxidation of cysteine. Differential pulse voltammetry results indicated that the detection range was from 5 × 10−8 to 5 × 10−3 M and the limit of detection was 6.64 × 10−8 M. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48051. 相似文献
20.
Hydrogels consisting of sodium alginate and N‐isopropylacrylamide covalently crosslinked with N,N′‐methylenebisacrylamide were prepared. The mixed‐interpenetrated networks obtained were characterized using elemental analysis, Fourier transform infrared and Raman spectroscopy, swelling measurements and environmental scanning electron microscopy. The thermo‐ and pH‐responsive properties of these hydrogels were evidenced by their swelling behaviour, which depended also on the amount of crosslinking agent and hydrogel composition. Copyright © 2010 Society of Chemical Industry 相似文献