首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚乳酸/聚乙烯醇纳米纤维的制备及结构   总被引:1,自引:0,他引:1  
以二甲基亚砜为溶剂,制备不同配比的聚乳酸(PLLA)和聚乙烯醇(PVA)的混合溶液,静电纺丝制得PLLA/PVA纳米纤维。采用红外光谱仪、原子力显微镜等对PLLA/PVA纳米纤维结构与性能进行了表征。结果表明:PLLA/PVA纳米纤维中PVA上的羟基与PLLA上的羰基形成了氢键,PLLA与PVA之间存在一定的相互作用,但PLLA/PVA纳米纤维存在相分离现象;混合溶液的PLLA质量分数为11%,PVA质量分数为8%时可以得到较好的PLLA/PVA纳米纤维,但PVA质量分数为6%时出现液滴及珠丝,PVA质量分数为4%时,不能制得纳米纤维。  相似文献   

2.
Poly(L ‐lactic acid) (PLLA) fibers have been extensively studied for various applications. In this work, PLLA and poly(vinyl alcohol) (PVA) were prepared by coelectrospinning to form composite nonwoven materials. The structures and diameter distribution of the electrospun PLLA/PVA composite nonwovens were examined by atomic force microscopy (AFM) and scanning electronic microscope (SEM). The wetting behavior of the electrospun PLLA/PVA composite nonwovens was also investigated using static contact angles and dynamic water adsorption measurements. It was observed that the addition of PVA in the electrospun PLLA/PVA composite nonwovens significantly alerted the contact angles and water adsorption of the composite materials. It was also found that the increase in the content of PLLA led to the increase in the surface contact angle and decrease in water adsorption of the electrospun PLLA/PVA nonwoven materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
A novel double‐nozzle air‐jet electrospinning apparatus was developed to fabricate nanofibers on a large scale. The distribution of the electric field at different nozzle distances was simulated to analyze the jet path, productivity, and deposition area of nanofiber webs and the nanofiber morphology. Our experiments showed that the bubbles usually ruptured intermittently on the top surface of the two nozzles and the jets traveled in a straight path with a high initial velocity. A continuous and even thickness of the nanofiber webs were obtained when the nozzle distances was less than 55 mm. At nozzle distances of 55 mm, the received fibers were thin with the lowest standard deviation. Experimental parameters involving the applied voltage, collecting distance, and air flow rate were also investigated to analyze the nanofiber morphology at a nozzle distance of 55 mm. The results show that the nanofibers presented a finer and thinner diameter at an applied voltage of 36 kV, a collecting distance of 18 cm, and an air flow rate of 800 mL/min. The nanofiber production of this setup increased to nearly 70 times that with a single‐needle electrospinning setup. On the basis of the principle of this air‐jet electrospinning setup, various arrangements of multinozzle electrospinning setups could be designed for higher throughput of nanofibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40040.  相似文献   

4.
Poly(ε‐caprolactone) ( PCL) biopolymer nanofibers and micro‐fibers have been fabricated for the first time at the rates up to 14.0 g per hour using a needleless and collectorless alternating current electrospinning technique. By combining the ac‐voltage, “green” low toxicity glacial acetic acid (AA) as the solvent and sodium acetate (NaAc) as an additive, beadless PCL fibers with diameters tunable from 150 nm to 2000 nm, varying surface morphology and degree of self‐bundling are obtained. In this new approach, the addition of NaAc plays a crucial role in improving the spinnability of PCL solution and fiber morphology. NaAc reveals the concentration‐dependent effect on charge transfer and rheological properties of the PCL/AA precursor, which results in broader ranges of spinnable PCL concentrations and ac‐voltages suitable for rapid manufacturing of PCL‐based fibers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43232.  相似文献   

5.
One of the latest developments in the field of piezoelectric polymers is the use of poly(γ‐benzyl‐α,L‐glutamate) (PBLG), a poly(amino acid) that can be poled along its α‐helical axis and fabricated into thermally stable piezoelectric microfibers via electrospinning. This study demonstrates a method for improving the piezoelectricity of electrospun PBLG microfibers by controlling the orientation of fibers using a method based on a concentrated electric field. The piezoelectricity is verified via customized quasi‐static and dynamic measurement methods, while the correlation between fiber alignment and the piezoelectric constant, d33, in the longitudinal mode of the electrospun PBLG fibers is investigated. When the level of alignment was varied from 50% to 90%, the piezoelectric constant increased linearly, showing a maximum d33 of 27 pC N?1 and a maximum force sensitivity of 65 mV N?1 at peak alignment. A fabricated flexible prototype based on electrospun PBLG fibers provides a new solution for the use of PBLG fibers in wearable energy harvesters or composites based on piezoelectric polymer fibers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46440.  相似文献   

6.
Poly(L ‐lactic acid) (PLLA) is one of the most studied synthetic biodegradable polymeric materials as a bone graft substitute. Taking into account the osteoconductive property of hydroxyapatite (HAp), we prepared fibrous matrices of PLLA without and with HAp particles in amounts of 0.25 or 0.50% (w/v, based on the volume of the base 15% w/v PLLA solution in 70:30 v/v dichloromethane/tetrahydrofuran). These fibrous matrices were assessed for their potential as substrates for bone cell culture. The presence of HAp in the composite fibre mats was confirmed using energy dispersive X‐ray spectroscopy mapping. The average diameters of both neat PLLA and PLLA/HAp fibres, as determined using scanning electron microscopy, ranged between 2.3 and 3.5 µm, with the average spacing between adjacent fibres ranging between 5.7 and 8.5 µm. The porosity of these fibrous membranes was high (ca 97–98%). A direct cytotoxicity evaluation with L929 mouse fibroblasts indicated that the neat PLLA fibre mats released no substance at a level that was toxic to the cells. The presence of HAp particles at 0.50% w/v in the PLLA fibrous scaffolds not only promoted the attachment and the proliferation of MC3T3‐E1 mouse pre‐osteoblastic cells, but also increased the expression of osteocalcin mRNA and the extent of mineralization after the cells had been cultured on the scaffolds for 14 and 21 days, respectively. The results obtained suggested that the PLLA/HAp fibre mats could be materials of choice for bone tissue engineering. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
This article investigated the effects of electron beam (EB) irradiation on poly(D ,L ‐lactic acid)‐b‐poly(ethylene glycol) copolymer (PLEG) and poly(L ‐lactic acid) (PLLA). The dominant effect of EB irradiation on both PLEG and PLLA was chain scission. With increasing dose, recombination reactions or partial crosslinking of PLEG can occur in addition to chain scission, but there was no obvious crosslinking for PLLA at doses below 200 kGy. The chain scission degree of irradiated PLEG and PLLA was calculated to be 0.213 and 0.403, respectively. The linear relationships were also established between the decrease in molecular weight with increasing dose. Elongation at break of the irradiated PLEG and PLLA decreased significantly, whereas the tensile strength and glass transition temperature of PLLA decreased much more significantly compared with PLEG. The presence of poly(ethylene glycol) (PEG) chain segment in PLEG was the key factor in its greater stability to EB irradiation compared with PLLA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The poly(3,4‐ethylenedioxythiophene) (PEDOT) family of polymers is a technologically important class of conducting polymers showing high stability, medium band gap, low redox potential and high optical transparency in the electrically conductive state. While PEDOT nanotubes and nanofibres have been synthesized electrochemically, significant opportunity exists for developing a convenient chemical synthetic route for the bulk synthesis of nanostructured PEDOT for potential use in the design of next‐generation nano‐electronic circuits and field emission devices. In this paper, chemical oxidative polymerization was used to synthesize PEDOT nanoparticles. These nanoparticles were co‐electrospun with poly(l ‐lactic acid) from a solution in acetone and N,N‐dimethylformamide. The PEDOT particles were analysed using attenuated total reflectance–Fourier transform infrared spectroscopy and particle size distribution using dynamic light scattering. The synthesized nanofibre mats were studied using differential scanning calorimetry and scanning electron microscopy, and conductivity was measured using a two‐probe conductivity tester. © 2016 Society of Chemical Industry  相似文献   

9.
The continuous nanofiber yarns of poly(L ‐lactide) (PLLA)/nano‐β‐tricalcium phosphate (n‐TCP) composite are prepared from oppositely charged electrospun nanofibers by conjugate electrospinning with coupled spinnerets. The morphology and mechanical properties of PLLA/n‐TCP nanofiber yarns are characterized by scanning electron microscope, transmission electron microscope, and electronic fiber strength tester. The results show that PLLA/n‐TCP nanofibers are aligned well along the longitudinal axis of the yarn, and the concentration of PLLA plays a significant role on the diameter of the nanofibers. The thicker yarn of PLLA/n‐TCP composite with the weight ratio of 10/1 has been produced by multiple conjugate electrospinning using three pairs of spinnerets, and the yarn has tensile strength of 0.31cN/dtex. A preliminary study of cell biocompatibility suggests that PLLA/n‐TCP nanofiber yarns may be useable scaffold materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

10.
Flurbiprofen axetil (FA)‐loaded coaxial electrospun poly(vinyl pyrrolidone) (PVP)–nanopoly(lactic‐co‐glycolic acid) core–shell composite nanofibers were successfully fabricated by a facile coaxial electrospinning, and an electrospun drug‐loaded system was formed for anti‐adhesion applications. The FA, which is a kind of lipid microsphere nonsteroidal anti‐inflammatory drug, was shown to be successfully adsorbed in the PVP, and the formed poly(lactic‐co‐glycolic acid) (PLGA)/PVP/FA composite nanofibers exhibited a uniform and smooth morphology. The cell viability assay and cell morphology observation revealed that the formed PLGA/PVP/FA composite nanofibers were cytocompatible. Importantly, the loaded FA within the PLGA/PVP coaxial nanofibers showed a sustained‐release profile and anti‐adhesion activity to inhibit the growth of the IEC‐6 and NIH3T3 model cells. With the significantly reduced burst‐release profile, good cytocompatibility, and anti‐adhesion activity, the developed PLGA/PVP/FA composite nanofibers were proposed to be a promising material in the fields of tissue engineering and pharmaceutical science. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41982.  相似文献   

11.
12.
The condensation reaction product of poly(lactic acid) (PLA) and a hydroxyl‐terminated four‐armed poly(ε‐caprolactone) (PCL) was studied by size‐exclusion chromatography, DSC, and NMR. The use of both L ‐lactic acid (LLA) and rac‐lactic acid (rac‐LA) was studied and the use of two different catalysts, stannous 2‐ethylhexanoate [Sn(Oct)2] and ferrous acetate [Fe(OAc)2], was also investigated. The thermal stability and adhesive properties were also measured for the different formulations. The characterization results suggested the formation of a blend of PLA and a block‐copolyester of PLA and PCL. The results further indicated partial miscibility in the amorphous phase of the blend showing only one glass‐transition temperature in most cases, although no randomized structures could be detected in the block‐copolymers. The polymerization in the Fe(OAc)2‐catalyzed experiments proceeded slower than in the Sn(Oct)2‐catalyzed experiments. The discoloring of the polymer was minor when Fe(OAc)2 was used as catalyst, but significant when Sn(Oct)2 was used. The ferrous catalyst also caused a slower thermal degradation. Differences in the morphology and in the adhesive properties could be related to the stereochemistry of the poly(lactic acid). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 196–204, 2004  相似文献   

13.
Ungeremine (UNG) is an alkaloid typically isolated from Pancratium maritimum or synthesized by the oxidation of lycorine. This antifungal alkaloid was incorporated into electrospun nanofibers based on blends of poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG). The effect of the UNG on the structure, morphology, and thermal properties of the fibers was evaluated, and the release of the alkaloid from the fibers was quantified. Studies on the release of the UNG for the nanofibers show that the release rate is related to the amount and distribution of the PEG in the nanofiber matrix. Initial burst release of the antifungal alkaloid is related to the PEG in the nanofibers, where after a sustained release occurs indicating that the UNG is present in both the PLA and PEG domains in the nanofibers.  相似文献   

14.
Almost all sutures in current usage only play one role, i.e. to mechanically tie wound tissues together. Drug‐loaded composite nanofibers obtained through coaxial electrospinning can initiate the development of a new type of biodegradable sutures with drug release. In this work, electrospun poly(L ‐lactic acid) (PLLA) nanofibers with uniaxial alignment were made into braided wires and were coated with chitosan and applied as tissue sutures. Toxicity evaluation on cells for the chitosan‐coated PLLA braided wires was carried out using the MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium) test, and an in vivo study was conducted by implanting the braided wires into muscle tissues of rats. The inflammation responses were examined at 3, 7, 14, 21 and 28 days after implanting. Experimental results indicated that the braided PLLA nanofiber wires coated with chitosan exhibited comparable tensile and knot strengths to those of a commercial suture, could tie wounded tissues for a complete healing without any breakage, had no cellular toxicity and could promote cell growth well. The chitosan‐coated PLLA sutures showed better histological compatibility than a silk suture in the in vivo study. Braided PLLA nanofiber wires fabricated using an electrospinning process followed by a braiding technique and coated with chitosan are applicable for uses within the body. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
PHBV is produced by bacteria as intracellular carbon storage. It is advantageous concerning biocompatibility and biodegradability, but its low crystallization rate hinders the melt‐processing of fibers. This problem can be overcome by combining PHBV with PLA in a core/sheath configuration and introducing a new spin pack concept. The resulting PHBV/PLA bicomponent fibers show an ultimate tensile stress of up to 0.34 GPa and an E‐modulus of up to 7.1 GPa. XRD reveals that PLA alone is responsible for tensile strength. In vitro biocompatibility studies with human fibroblasts reveal good cytocompatibility, making these fibers promising candidates for medical therapeutic approaches.

  相似文献   


16.
In this study, the effect of solvents on the morphology and conductivity of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) nanofibers is investigated. Conductive PEDOT:PSS nanofibers are electrospun by dissolving a fiber‐forming polymer, polyvinyl alcohol, in an aqueous dispersion of PEDOT:PSS. The conductivity of PEDOT:PSS nanofibers is enhanced 15‐fold by addition of DMSO and almost 30‐fold by addition of ethylene glycol to the spinning dopes. This improvement is attributed to the change in the conformation of the PEDOT chains from the coiled benzoid to the extended coil quinoid structure as confirmed by Raman spectroscopy, X‐ray diffraction, and differential scanning calorimetry. Scanning electron microscopy images show that less beady and more uniform fiber morphology could be obtained by incorporation of ethylene glycol in the spinning dopes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40305.  相似文献   

17.
Summary: Additives that exhibit polyelectrolyte behavior such as N,N‐dimethylformamide (DMF) may improve the electrospinning characteristics of viscoelastic polymer solutions. DMF additions to the solution lead to extensive jet splaying, thereby reducing the fiber diameter significantly. Nanofibrous structures with diameters of the order of 150 nm can be produced by the addition of about 10 vol.‐% DMF to the solvent (chloroform). DMF additions also yield a narrow, unimodal distribution of fibers, compared to the bimodal distribution typically detected in electrospun polymers.

Jet breakdown without (left) and with DMF addition to the solution.  相似文献   


18.
In this study, we prepared polydimethylsiloxane (PDMS)‐modified polyurethane–poly(?‐caprolactone) nanofibrous membranes with excellent waterproof, breathable performances via an electrospinning technique. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and mechanical testing were used to characterize the morphologies and properties of the composite nanofibers. The fiber diameter and porous structure of the membranes were regulated by the adjustment of the temperatures of thermal treatment and the PDMS concentrations. The fibrous membranes obtained at a typical temperature of 70 °C possessed an optimized fibrous structure with a diameter of 514 ± 2 nm, a pore size of 0.55–0.65 µm, and a porosity of 77.7%. The resulting nanofibrous membranes modified with 5 wt % PDMS were endowed with good waterproof properties (water contact angle = 141 ± 1°, hydrostatic pressure = 73.6 kPa) and a high breathability (air permeability rate = 6.57 L m?2 s?1, water vapor transmission rate = 9.03 kg m?2 day?1). Meanwhile, the membranes exhibited robust mechanical properties with a high strength (breakage stress = 11.7 MPa) and excellent thermal stability. This suggests that they would be promising candidates for waterproof, breathable applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46360.  相似文献   

19.
Poly(vinyl alcohol) (PVA)/montmorillonite clay (MMT) nanofiber mats have been fabricated by the electrospinning technique. The PVA/MMT nanofiber mats were characterized by X‐ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and mechanical measurements. The study showed that the introduction of MMT results in improvement in tensile strength, and thermal stability of the PVA matrix. XRD patterns and SEM micrographs suggest the coexistence of exfoliated MMT layers over the studied MMT contents. FTIR revealed that there might be possible interaction occurred between the MMT clay and PVA matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Electrospinning of a poly(ε‐caprolactone) (PCL)/lactic acid (LA) blend was investigated to fabricate electrospun PCL fibers with improved biodegradability and biocompatibility for biomedical applications. Simple blending of PCL solution with various amounts of LA was used for electrospinning, and the physicochemical properties of the as‐fabricated mat were evaluated using various techniques. Scanning electron microscopy showed that fiber diameter decreased with increasing amount of LA. Fourier transform infrared spectroscopy and thermogravimetric analysis also revealed that LA was successfully incorporated in PCL fibers. The presence of LA can accelerate the biodegradation of PCL fibers and enhance the hydrophilicity of a membrane. The adhesion, viability and proliferation properties of osteoblast cells on the PCL/LA composite fibers were analyzed using in vitro cell compatibility tests which showed that LA can increase the cell compatibility of PCL fibers. Additionally, subsequent conversion of LA into calcium lactate by neutralization with calcium base can provide Ca2+ ions on the fiber surface to promote the nucleation of CaPO4 particles. © 2013 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号