首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional polyurethane surfactants (di‐block and tri‐block) were synthesized by addition polymerization of 2,4‐toluenediisocyanate with poly(propylene oxide) and monoallyl‐end‐capped poly(ethylene oxide). The chemical structure of the polyurethane surfactants was confirmed by Fourier transform infrared and 1H NMR spectroscopy. These polymeric surfactants were found to have excellent surface activity. The lowest surface tension of polyurethane surfactant aqueous solutions could be reduced to 37.6 mN m?1. All the polyurethane surfactants synthesized had low critical micelle concentrations and could reduce the surface tension even at very low concentration levels (10?6–10?5 mol L?1). The solubilization of toluene in micelles of the synthesized polyurethane surfactants was studied using UV‐visible spectroscopy, and the results showed that they all exhibited good solubilization capacity. Possible solubilization positions of toluene in the micelles are conjectured. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
Novel amphiphilic biodegradable graft copolymer based on poly(aspartic acid) was prepared by attaching monomethoxy polyethylene glycol (mPEG) as hydrophiphic segment to poly(aspartic acid‐g‐octadecylamine) (PASP‐g‐ODA) as hydrophobic backbone. The chemical structures of amphiphilic copolymers were confirmed by FTIR and 1H NMR spectroscopy. The polymeric micelles were prepared with solvent evaporation and their physicochemical properties in aqueous media were characterized by dynamic light scattering (DLS) and fluorescence spectroscopy. These micelles were confirmed to be pH‐sensitive by measuring optical transmittance of micelle solution and the size of micellar aggregates. The number average diameter of polymeric micelles prepared in medium at pH 2.5 was larger than that in neutral and basic medium and showed a bimodal size distribution because of the protonation of carboxyl groups in backbone. Furthermore, the polymeric micelle can load water‐insoluble drug (podophyllotoxin), and the drug release from micelles showed a pH‐dependency. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

3.
A new Pluronic (F68)‐1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphoethanolamine (DPPE) (Pluronic (F68)–DPPE) copolymer was synthesized with Pluronic (F68) and DPPE. The chemical structure and physical properties of copolymers were determined by FTIR, 1H NMR, 13C NMR, 31P NMR, and TGA. Environmental scanning electron microscopy, fluorescence spectroscopy, and dynamic light scattering method confirmed the formation of copolymeric micelles of Pluronic (F68)‐DPPE. To estimate the feasibility as novel drug carriers, the copolymer micelles were prepared by the phase separation dialysis method. Amphotericin B as a lipophilic model drug was incorporated into copolymeric micelles and the drug release behavior was investigated. It was found that the chemical composition of the micelle was a key factor in controlling micelles size, drug‐loading content, and drug release behavior. As DPPE segment weight ratio increased, the micelle size and drug‐loading content increased, and the drug release rate decreased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Amphiphilic thermally sensitive poly(N‐isopropylacrylamide)‐block‐poly(tetramethylene carbonate) block copolymers were synthesized by ring‐opening polymerization of tetramethylene carbonate with hydroxyl‐terminated poly(N‐isopropylacrylamide) (PNiPAAm) as macro‐initiator in the presence of stannous octoate as catalyst. The synthesis involved PNiPAAm bearing a single terminal hydroxyl group prepared by telomerization using 2‐hydroxyethanethiol as a chain‐transfer agent. The copolymers were characterized using 1H NMR and Fourier transform infrared spectroscopy and gel permeation chromatography. Their solutions show reversible changes in optical properties: transparent below the lower critical solution temperature (LCST) and opaque above the LCST. The LCST depends on the polymer composition and the media. Owing to their amphiphilic characteristics, the block copolymers form micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range 1.11–22.9 mg L?1. Increasing the hydrophobic segment length or decreasing the hydrophilic segment length in the amphiphilic diblock copolymers produces lower CMCs. A core‐shell structure of the micelles is evident from 1H NMR analyses of the micelles in D2O. Transmission electron microscopic analyses of micelle morphology show a spherical structure of both blank and drug‐loaded micelles. The blank and drug‐loaded micelles have an average size of less than 130 nm. Observations show high drug‐entrapment efficiency and drug‐loading content for the drug‐loaded micelles. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
Amphiphilic copolymers with cationic hydrophilic moieties and different ratios of hydrophobic portion to hydrophilic portion were designed and synthesized via the combination of hydrosilylation reactions and quaternization reactions. The structures were characterized through Fourier transform infrared spectroscopy, 1H NMR , 13C NMR and gel permeation chromatography. The measurements of critical micelle concentrations, electrical conductivities and zeta potentials indicated that the copolymers could self‐assemble into nanoparticles with charges around the surface in aqueous solution. The sizes of the micelles were between 67 nm and 104 nm detected by dynamic light scattering. The self‐assembled micelles were used as drug carriers to encapsulate a model drug (tocopherol), and their drug‐loading content (DLC ) and efficiency (DLE ) were determined by UV ?visible spectra, resulting in considerable drug‐loading capacity to a tocopherol maximum up to 17.2% (DLC ) and 80.3% (DLE ) with a size of 90 nm. The blank micelles and drug‐loaded micelles displayed a spherical shape detected by transmission electron microscopy, which demonstrated not only the self‐assembly behaviors but also the drug‐loading performances of the cationic amphiphilic copolymers. All the results demonstrated that the cationic amphiphilic copolymers could be used as potential electric‐responsive drug carriers. © 2017 Society of Chemical Industry  相似文献   

6.
BACKGROUND: The aim of the work presented was to synthesize a series of amphiphilic hyperbranched poly[(amine‐ester)‐co‐(D ,L ‐lactide)] (HPAE‐co‐PLA) copolymers and study the formation of copolymeric micelles. These copolymeric micelle systems are expected to be potential candidates for applications in protein drug delivery. RESULTS: The chemical structures of the copolymers were confirmed by Fourier transform infrared spectroscopy, 13C NMR and thermogravimetric analysis. Fluorescence spectroscopy and dynamic light scattering confirmed the formation of copolymeric micelles of the HPAE‐co‐PLA copolymers. The maintenance of stability of bovine serum albumin (BSA) during release from micelles in vitro was also measured using circular dichroism and fluorescence spectrometry. CONCLUSION: Novel hyperbranched HPAE‐co‐PLA copolymers have been synthesized. Conjugation of PLA to HPAE was proved to be an available method for the preparation of micelles for protein delivery. The BSA‐loaded micelles showed enhanced encapsulation efficiency and the structural stability of BSA was retained during the release process. The hyperbranched polymeric micelles could be useful as drug carriers for protein drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
Novel tri‐armed star polystyrene‐block‐poly(N‐isopropylacrylamide) block copolymers with trimesic acid as central molecules were synthesized by successive two‐step atom transfer radical polymerization, and confirmed by Fourier‐transform infrared spectra, 1H nuclear magnetic resonance, and laser light scattering gel chromatography system. The copolymers could self‐assemble into spherical core‐shell micelles in aqueous media independent on drug loading. Physicochemical properties of the blank and drug‐loaded micelles were examined by surface tension, fluorescence spectroscopy, UV‐vis, transmission electron microscope, and dynamic light scattering measurements. The copolymer micelles exhibited thermo‐triggered phase transition, with low critical solution temperature of 33.7 and 34.6°C, varying with copolymer compositions. The critical aggregate concentrations were 11.62 and 47.61 mg L?1, and hydrodynamic diameters from 200 to 220 nm. Water‐insoluble 10‐hydroxycamptothecine was encapsulated into the micelle aggregates to investigate the change in the resulting physicochemical parameters, thermo‐triggered in vitro drug release, and the applicability as drug targeting release carriers. MTT assays were carried out to uncover cytotoxicity of the newly developed micelle‐based drug formulations. © 2014 American Institute of Chemical Engineers AIChE J, 61: 35–45, 2015  相似文献   

8.
A series of poly(?‐caprolactone)–poly(ethylene glycol) (PCL‐PEG) and poly(?‐caprolactone/glycolide)–poly(ethylene glycol) [P(CL/GA)‐PEG] diblock copolymers were prepared by ring‐opening polymerization of ?‐caprolactone or a mixture of ?‐caprolactone and glycolide using monomethoxy PEG (mPEG) as macroinitiator and Sn(Oct)2 as catalyst. The resulting copolymers were characterized using 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Copolymer micelles were prepared using the nanoprecipitation method. The morphology of the micelles was spherical or worm‐like as revealed by transmission electron microscopy, depending on the copolymer composition and the length of the hydrophobic block. Introduction of the glycolide component, even in small amounts (CL/GA = 10), disrupted the chain structure and led to the formation of spherical micelles. Interestingly, the micelle size decreased with the encapsulation of paclitaxel. Micelles prepared from mPEG5000‐derived copolymers exhibited better drug loading properties and slower drug release than those from mPEG2000‐derived copolymers. Drug release was faster for copolymers with shorter PCL blocks than for those with longer PCL chains. The introduction of glycolide moieties enhanced drug release, but the overall release rate did not exceed 10% in 30 days. In contrast, drug release was enhanced in acidic media. Therefore, these bioresorbable micelles and especially P(CL/GA)‐PEG micelles with excellent stability, high drug loading content, and prolonged drug release could be promising for applications as drug carriers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45732.  相似文献   

9.
A crosslinked amphiphilic copolymer [poly(ethylene glycol) (PEG)–poly(methyl methacrylate) (PMMA)–ethylene glycol dimethacrylate (EGDM)] composed of PMMA, PEG, and crosslinking units (EGDM) was synthesized by atom transfer radical polymerization to develop micelles as carriers for hydrophobic drugs. By adjusting the molar ratio of methyl methacrylate and EGDM, three block copolymer samples (P0, P1, and P2) were prepared. The measurement of gel permeation chromatography and 1H‐NMR indicated the formation of crosslinked structures for P1 and P2. Fluorescence spectroscopy measurement indicated that PEG–PMMA–EGDM could self‐assemble to form micelles, and the critical micelle concentration values of the crosslinked polymer were lower than those of linear ones. The prepared PEG–PMMA–EGDM micelles were used to load doxorubicin (DOX). The drug‐loading efficiencies of P1 and P2 were higher than that of P0 because the crosslinking units enhanced the micelles' stability. With increasing drug‐loading contents, DOX release from the micelles in vitro was decreased, and in the crosslinked formulations, the release rate was also slower. An in vitro release study indicated that DOX release from the micelles for the linear samples was faster than that for crosslinked micelles. The drug feeding amount increased and resulted in an increase in the drug‐loading content, and the loading efficiency decreased. These PEG–PMMA–EGDM micelles did not show toxicity in vitro and could reduce the cytotoxicity of DOX in the micelles; this suggested that they are good candidates as stable drug carriers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39623.  相似文献   

10.
Brush copolymers composed of methoxy poly(ethylene glycol) (MPEG) and poly(ε‐caprolactone) (PCL) have been synthesized by the ring‐opening polymerization of ε‐caprolactone initiated by hydroxyl function of thermally esterified MPEG‐citrate in presence of stannous octoate. Citric acid (CA) acts as spacer between brush‐like MPEG and the long chain of PCL. Existence of hydrophobic domains as cores of the micelles were characterized by 1H NMR spectroscopy and further confirmed with fluorescence technique using pyrene as a probe. Critical micelle concentration (CMC) of the synthesized copolymer decreased from 0.019 to 0.0031 mg/mL on increasing the fraction of PCL. Along with the physicochemical study, the brush copolymers were explored for the preparation of nanoparticles by nanoprecipitation technique. The morphology and geometry of micelles were investigated by using DLS, AFM, and TEM. Hydrodyanamic dimensions of micelles were around 118 and 178 nm with the core size of 8–10 nm, which further aggregated to form secondary micelle of 60–90 nm. Such assembled polymeric micelles with its flexible dendritic MPEG corona could hold a promise for the immobilization (encapsulation) of hydrophobic drugs and subsequently promote sustained release so that it can be a good vehicle for anti‐cancer drug deliverance. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Self‐assembly of thermo‐sensitive poly (t‐butyl acrylate)‐b‐poly(N‐isopropylacrylamide) (PtBA‐ b‐PNIPAM) micelles in aqueous medium and its applications in controlled release of hydrophobic drugs were described. PtBA‐b‐PNIPAM was synthesized by atom transfer radical polymerization and aggregated into thermo‐sensitive core‐shell micelles with regular spheres in water, which was confirmed by 1H‐NMR, fluorescence spectroscopy, transmission electron microscopic (TEM), and UV–vis spectroscopic techniques. The critical micelle concentration of micelles decreased with the increase of the hydrophobic components. The anti‐inflammation drug naproxen (NAP) was loaded as the model drug into polymeric micelles, which showed a dramatic thermo‐sensitive fast/slow switching behavior around the lower critical solution temperature (LCST). When the temperature was enhanced above LCST, release of NAP from core‐shell micelles was accelerated ascribed to the temperature‐induced deformation of micelles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Glucose‐sensitive and fluorescence copolymer micelles were designed and prepared via a combination of photoinitiated polymerization and enzymatic transesterification. The water‐soluble photoinitiator and emulsifier 2‐oxooctanoic acid self‐polymerized dimer molecules under UV irradiation were characterized by mass spectrometry. The fluorescence dye (9‐anthracene alcohol) and biocompatible hydrophilic chains [poly(ethylene glycol)] were introduced to the polymer chains during the photopolymerization and enzymatic transesterification processes. The as‐prepared copolymers were confirmed by 1H‐NMR spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering. The resulting copolymers exhibited excellent glucose sensitivity and stability against protein. The optical fluorescence properties of the copolymer micelles were investigated with fluorescence spectrophotometry, fluorescence microscopy, and confocal laser scanning microscopy. Because of the amphiphilic feature, the micelles could be self‐assembled and used to load insulin. The controlled release of insulin was evaluated and was triggered by glucose in vitro. This study provided a new strategy for fabricating functional carriers as self‐regulated insulin‐release systems. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43026.  相似文献   

13.
Functional polyurethane surfactants (tri-block) were synthesized by addition polymerization of hexamethylene diisocyanate (HMDI), isophorone diisocyanate (IPDI) and 2, 4-toluene diisocyanate (TDI) with poly (propylene oxide) (PPO) and monoallyl-end-capped poly (ethylene oxide) (PEO). The chemical structure of the polyurethane surfactants (PUS) was confirmed by Fourier transform infrared, 1H NMR and 13C NMR spectroscopy. Then, a series of polyvinyl acetate (PVAc) latexes were successfully synthesized by the emulsion copolymerization in the presence of different PUS. The particle size, amount of coagulum and surface tension were evaluated. These polymeric surfactants were found to have excellent surface activity. The lowest surface tension of polyurethane surfactant aqueous solutions could be reduced to 41.5 dyn/cm for IPDI. All the polyurethane surfactants synthesized had low critical micelle concentrations and could reduce the surface tension even at very low concentration levels (10?3–10?2 molL?1).  相似文献   

14.
Thermoresponsive poly(N‐isopropyl acrylamide) (PNIPAM)‐block‐hydroxy‐terminated polybutadine‐block‐PNIPAM triblock copolymers were synthesized by atom transfer radical polymerization; this was followed by the in situ epoxidation reaction of peracetic acid. The copolymers were characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography measurements, and their physicochemical properties in aqueous solution were investigated by surface tension measurement, fluorescent spectrometry, ultraviolet–visible transmittance, transmission electron microscopy observations, dynamic light scattering, and so on. The experimental results indicate that the epoxidized copolymer micelle aggregates retained a spherical core–shell micelle structure similar to the control sample. However, they possessed a decreased critical aggregate concentration (CAC), increased hydrodynamic diameters, and a high aggregation number and cloud point because of the incorporation of epoxy groups and so on. In particular, the epoxidized copolymer micelles assumed an improved loading capacity and entrapment efficiency of the drug, a preferable drug‐release profiles without an initial burst release, and a low cytotoxicity. Therefore, they were more suitable for the loading and delivery of the hydrophobic drug as a controlled release drug carrier. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41877.  相似文献   

15.
The current study synthesized amphiphilic thermal/pH-sensitive block copolymers PNiPAAm-b-PHpr by condensation polymerization of trans-4-hydroxy-l-proline (Hpr) initiated from hydroxy-terminated poly(N-isopropylacrylamide) (PNiPAAm) as the macroinitiator in the presence of the catalyst, SnOct2. 1H NMR, FTIR, and gel permeation chromatography (GPC) characterized these copolymers. Their solutions showed reversible changes in optical properties: transparent below a lower critical solution temperature (LCST) and opaque above the LCST. The LCST values depended on the polymer composition and the media. With critical micelle concentrations (CMCs) in the range of 1.23-3.73 mg L−1, the block copolymers formed micelles in the aqueous phase owing to their amphiphilic characteristics. Increased hydrophobic segment length or decreased hydrophilic segment length in an amphiphilic diblock copolymer produced lower CMC values. The current work proved the core-shell structure of micelles by 1H NMR analyses of the micelles in D2O. Transmission electron microscopy analyzed micelle morphology, showing a spherical core-shell structure. The micelles had an average size in the range of 170˜210 nm (blank), and 195˜280 nm (with drug). Observations showed high drug entrapment efficiency and drug-loading content for the drug micelles.  相似文献   

16.
A novel A2BA2‐type thermosensitive four‐armed star block copolymer, poly(N‐isopropyl acrylamide)2b‐poly(lactic acid)‐b‐poly(N‐isopropyl acrylamide)2, was synthesized by atom transfer radical polymerization and characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography. The copolymers can self‐assemble into nanoscale spherical core–shell micelles. Dynamic light scattering, surface tension, and ultraviolet–visible determination revealed that the micelles had hydrodynamic diameters (Dh) below 200 nm, critical micelle concentrations from 50 to 55 mg/L, ζ potentials from ?7 to ?19 mV, and cloud points (CPs) of 34–36°C, depending on the [Monomer]/[Macroinitiator] ratios. The CPs and ζ potential absolute values were slightly decreased in simulated physiological media, whereas Dh increased somewhat. The hydrophobic camptothecin (CPT) was entrapped in polymer micelles to investigate the thermo‐induced drug release. The stability of the CPT‐loaded micelles was evaluated by changes in the CPT contents loaded in the micelles and micellar sizes. The MTT cell viability was used to validate the biocompatibility of the developed copolymer micelle aggregates. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4137–4146, 2013  相似文献   

17.
We synthesized a drug delivery system of poly(N‐isopropylacrylamide)‐b‐oligo(methyl methacrylate) (PNIPAAm‐b‐OMMA) via polycondensation of two homopolymers in 1,4‐dioxane. The products are characterized by FT‐IR and 1H‐NMR spectra and TEM. The PNIPAAm‐b‐OMMA copolymer micelles in aqueous solution present the same lower critical solution temperature (LCST) as the unmodified PNIPAAm, owing to the formation of a core–shell micellar structure that the hydrophilic shell shields the hydrophobic inner OMMA core from interacting with water. The micelle carriers exhibit two heterogeneous microdomains: a hydrophobic inner core capable of highly solubilizing hydrophobic prednisolone molecules, plus a hydrated outer shell that stabilizes this micellar structure below its LCST. Moreover, the micelle carriers show reversible thermoresponsive aggregation/dispersion in response to temperature cycles through the LCST. By using the antiinflammation drug prednisolone as model drug, it is found that the PNIPAAm‐b‐OMMA drug carrier could prolong the release time and control the release amount by changing the temperature. Accordingly, this copolymer micelle may provide as an effective drug carrier for drug control and release. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
The present article reports eco‐friendly multi‐functional polyurethane–ZnO hybrid nanocomposite coatings obtained from Thevetia peruviana seed oil (TPSO). Initially, the polyols were prepared by treating TPSO with glycerol and the formation was supported by Fourier transform infrared (FT‐IR) and 1H‐NMR studies. In the next stage, siloxane functionalized ZnO nanoparticles were added to the polyol mixture in different weight percentages (0, 1 and 2 %) and then treated with excess 4,4′‐diisocyanatodicyclohexylmethane (H12MDI) in order to synthesize isocyanate terminated polyurethane nanocomposites. The polyurethane hybrids were then casted as thin films and cured under atmospheric moisture. After complete curing they were characterized by using FT‐IR, 1H‐NMR, 13C‐NMR, X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, and dynamic mechanical thermal analysis techniques. The hybrid nanocomposites showed superior thermo‐mechanical and anti‐corrosive properties compared to pristine polyurethane. Also, due to the presence of nano ZnO in the polyurethane matrix, the composite coatings are showing excellent resistance towards various bacterial and fungal stains.  相似文献   

19.
Alkoxysilane‐modified high solids hydroxyl acrylic polyurethane was prepared by solution polymerization. Its structure, surface, and thermal properties were investigated by 1H NMR, device of contact angle, thermo gravimetric analysis (TGA), atomic force microscopy (AFM), and X‐ray photoelectron spectroscopy (XPS). Research showed that alkoxysilane modified high solids hydroxyl acrylic polyurethane has superior properties that can be used for automotive paints. The contents of silicone in the alkoxysilane‐modified high solids hydroxyl acrylic polyurethane were 1.25, 1.5, 2, and 2.5 wt %. In this study, γ‐methacryloxypropyltrimethoxysilane (MPTS) was chosen as the modifier. Results showed that the contact angles of water and surface roughness on the film of MPTS modified high solids hydroxyl acrylic polyurethane increased, and thermal stability of the film at high temperatures improved with the increasing of the silicone content in the resins. MPTS modified high solids hydroxyl acrylic polyurethane with 2.5 wt % silicone content had better water resistance, better acid resistance, higher hardness, and excellent weatherability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1866–1871, 2006  相似文献   

20.
This study describes the synthesis of amphiphilic ABC‐triblock copolymers comprising a central pseudopoly(4‐hydroxy‐L ‐proline) segment and terminal hydrophilic poly(ethylene glycol)methyl ether as well as hydrophobic poly(ε‐caprolactone) blocks. Differential scanning calorimetry, 1H‐NMR spectroscopy, and gel permeation chromatography are used to characterize the copolymers. The thermal properties (Tg and Tms) of the triblock copolymers depend on the composition of polymers. Larger amounts of ε‐CL incorporated into the macromolecular backbone increased Tg and Tms. Fluorescence spectroscopy, transmission electron microscopy, and dynamic light scattering are utilized to investigate their micellar characteristics in the aqueous phase. Observations showed a higher critical micelle concentration with higher hydrophilic components in the copolymers. The micelle exhibited a core‐shell‐corona and/or vesicle shape, and the average size was less than 300 nm. Drug entrapment efficiency and drug loading of micelles depending on the composition of block polymers are also described. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号