共查询到20条相似文献,搜索用时 31 毫秒
1.
A series easily soluble polyarylates were synthesized from either 1,1‐bis(4‐hydroxyphenyl)‐1‐phenylethane or tetramethylbisphenol A with various aromatic diacid chlorides by the two‐phase interfacial polycondensation. These polyarylates have the inherent viscositiesin the range of 0.36–0.97 dL/g, and their number‐average and weight‐average molecular weights determined by gel permeation chromatography are 14,200–43,200 and 31,900–102,500, respectively. All these polyarylates are readily soluble in a wide range of organic solvents, thus these polymers can be convenient to process into heat resistance films by cast, spin‐ or dip‐coating. The polyarylates have the glass transition temperatures in the range of 165.0–201.6°C. The pendent phenyl‐containing polyarylates reveal excellent thermal stability, and their initial degradation temperatures are all above 480°C and char yields at 700°C are 37.97–40.53% in nitrogen atmosphere. However, the polymers prepared from tetramethylbisphenol A have a large decrease in thermal stability, and their initial degradation temperatures in nitrogen are only about 440°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
2.
A series of poly(arylene ether)s with biphenyl units and pendant sulfonated phenylsulfonyl groups was prepared via nucleophilic aromatic substitution reactions of varying ratios of 3,5‐difluoro‐3′‐sulfonated diphenylsulfone and 4,4′‐difluorodiphenylsulfone with 4,4′‐biphenol. As such, the sulfonic acid moieties reside in the meta position of a pendant, electron‐poor phenylsulfonyl group. Mechanically robust proton‐exchange membranes with ion‐exchange capacities (IEC) ranging from 0.91 to 2.05 meq g?1 were cast from dimethylacetamide. The thermal stability of the membranes was evaluated via thermogravimetric analysis and the 5% weight losses were found to be in excess of 330 °C in air. The glass transition temperatures were determined, via differential scanning calorimetry, to range from a low of 148 to a high of 209 °C at IEC values of 0.91 and 1.79 meq g?1, respectively. The copolymer membranes reached proton conductivities as high as 142 mS cm?1 under 100% relative humidity, with relatively low water uptake values (8–32 wt%). Copyright © 2012 Society of Chemical Industry 相似文献
3.
Jan Schauer Wolfgang Albrecht Thomas Weigel Vlastimil Kdela Zbynek Pientka 《应用聚合物科学杂志》2001,81(1):134-142
Membranes were prepared from solutions containing Udel‐type polysulfone (PSf) and sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO). Polymer solutions in 1‐methyl‐2‐pyrrolidone were cast on a nonwoven textile and precipitated in a water bath. The permeabilities and selectivities of the prepared membranes depended on the concentrations of both polymers in the casting solution. The higher the concentration of PSf, the lower were the permeabilities to water and average pore sizes of the membranes. On the other hand, a very small amount of SPPO in the casting solution (about 1–4 wt % relative to the casting solution weight) brought about a considerable increase in water permeabilities and had a small influence on the average pore sizes. The effects were most pronounced if SPPO with a degree of sulfonation of 20–40% was used. The considerable increase in water permeabilities was explained by separation of the PSf and SPPO phases during precipitation in water and by the concentration of hydrophilic SPPO on the surface of the membrane and its pores. The determinations of the oriented concentration potentials proved the presence of a negative surface charge in the membranes. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 134–142, 2001 相似文献
4.
A new monomer 1,1‐bis(4‐amino‐3‐mercaptophenyl)‐4‐tert‐butylcyclohexane dihydrochloride, bearing the bulky pendant 4‐tert‐butylcyclohexylidene group, was synthesized from 4‐tert‐butylcyclohexanone in three steps. Its chemical structure was characterized by 1H NMR, 13C NMR, MS, FTIR, and EA. Aromatic poly(bisbenzothiazole)s (PBTs V) were prepared from the new monomer and five aromatic dicarboxylic acids by direct polycondensation. The inherent viscosities were in the range of 0.63–2.17 dL/g. These polymers exhibited good solubility and thermal stability. Most of the prepared PBTs V were soluble in various polar solvents. Thermogravimetric analysis showed the decomposition temperatures at 10% weight loss that were in the range of 495–534°C in nitrogen. All the PBTs V, characterized by X‐ray diffraction, were amorphous. The UV absorption spectra of PBTs V showed a range of λmax from 334 to 394 nm. All the PBTs V prepared had evident fluorescence emission peaks, ranging from 423 to 475 nm with different intensity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2000–2008, 2006 相似文献
5.
Shou‐Ri Sheng Wei Zhang Chun Lu Jiong Wan Xiao‐Ling Liu Cai‐Sheng Song 《应用聚合物科学杂志》2012,126(1):297-303
A series of new cardo poly(ether imide)s bearing flexible ether and bulky xanthene pendant groups was prepared from 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene with six commercially available aromatic tetracarboxylic dianhydrides in N,N‐dimethylacetamide (DMAc) via the poly(amic acid) precursors and subsequent thermal or chemical imidization. The intermediate poly(amic acid)s had inherent viscosities between 0.83 and 1.28 dL/g, could be cast from DMAc solutions and thermally converted into transparent, flexible, and tough poly(ether imide) films which were further characterized by X‐ray and mechanical analysis. All of the poly(ether imide)s were amorphous and their films exhibited tensile strengths of 89–108 MPa, elongations at break of 7–9%, and initial moduli of 2.12–2.65 GPa. Three poly(ether imide)s derived from 4,4′‐oxydiphthalic anhydride, 4,4′‐sulfonyldiphthalic anhydride, and 2,2‐bis(3,4‐dicarboxyphenyl))hexafluoropropane anhydride, respectively, exhibited excellent solubility in various solvents such as DMAc, N,N‐dimethylformamide, N‐methyl‐2‐pyrrolidinone, pyridine, and even in tetrahydrofuran at room temperature. The resulting poly(ether imide)s with glass transition temperatures between 286 and 335°C had initial decomposition temperatures above 500°C, 10% weight loss temperatures ranging from 551 to 575°C in nitrogen and 547 to 570°C in air, and char yields of 53–64% at 800°C in nitrogen. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
6.
A novel monomer, bis[4‐(4‐fluorobenzoyl)phenyl]phenylphosphine oxide, was synthesized through the reaction of bis(4‐chloroformylphenyl) phenyl phosphine oxide with fluorobenzene. Three poly(ether ether ketone ketone)s derived from bis[4‐(4‐fluorobenzoyl)phenyl]phenylphosphine oxide and different aromatic bisphenols were prepared by aromatic nucleophilic substitution reactions. The resulting polymers had inherent viscosities in the range of 0.55–0.73 dL/g. The structures of the poly(ether ether ketone ketone)s were characterized with Fourier transform infrared and 1H‐NMR. Thermal analysis indicated that the glass‐transition temperatures of the poly(ether ether ketone ketone)s were higher than 200°C, and the 5% weight loss temperatures in nitrogen were higher than 463°C. All the polymers showed excellent solubility in polar solvents such as N‐methyl‐2‐pyrrolidone, dimethylformamide, and dimethylacetamide and could also be dissolved in chlorinated methane. The polymers afforded transparent and flexible films by solvent casting. Organic phosphorous moieties also imparted good flame‐retardancy to the polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
7.
BACKGROUND: Poly(ether amide)s have been well studied in terms of improving the physical and thermal properties of aromatic polyamides. Poly(ether amide)s of high enough molecular weight to be useful for industrial purposes are generally difficult to prepare. The objective of this project was to introduce a simple and commercially feasible process to prepare poly(ether amide)s by a polymerization reaction at relatively low temperature. RESULTS: A series of poly(ether amide)s were prepared by direct polyamidation of p‐xylylene glycol with bis(ether nitrile)s via the Ritter reaction using concentrated H2SO4 in acetic acid. The synthesized poly(ether amide)s showed good solubility in polar aprotic solvents. The resultant poly(ether amide)s had inherent viscosities in the range 0.36–1.03 dL g?1. The glass transition temperatures of the poly(ether amide)s were determined using differential scanning calorimetry to be in the range 190–258 °C. Thermogravimetric analysis data for these polymers indicated the 10% weight loss temperatures to be in the range 290–390 °C in nitrogen atmosphere. CONCLUSION: The Ritter reaction was applied for the synthesis of a variety of poly(ether amide)s with moderate to high molecular weights. This procedure provides a simple polymerization process for the convenient preparation of poly(ether amide)s in high yield at room temperature. Copyright © 2009 Society of Chemical Industry 相似文献
8.
Sulfonated poly(arylene ether sulfone)s (S‐PESs) were synthesized from sulfonated 4,4′‐dichlorodiphenylsulfone (S‐DCDPS), 4,4′‐dichlorodiphenylsulfone (DCDPS), and 4,4′‐biphenol through variations in the molar ratio of S‐DCDPS to DCDPS from 10/90 to 40/60. The S‐PES sodium form was characterized with Fourier transform infrared, 1H‐NMR, thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis, and the intrinsic viscosity and solubility were also evaluated. The sodium form was then subjected to acidification by immersion in 1.5M HCl for 24 h at room temperature, which was followed by washing with deionized water. The S‐PES adhesive properties were measured with single laboratory shear samples with aluminum alloys, and the failure mode was investigated. The synthesized S‐PESs exhibited increased glass‐transition temperatures with increased S‐DCDPS/DCDPS ratios; their acid forms provided much lower glass‐transition temperatures than their sodium forms. In addition, the S‐PES sodium form exhibited a high intrinsic viscosity, which indicated a high molecular weight. The S‐PES acid form exhibited an adhesion strength similar to that of the sodium form, and the single‐lap‐shear strength increased with 10% S‐PES and then decreased with 20, 30, and 40% S‐PES. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1211–1218, 2004 相似文献
9.
Lysozyme-loaded polymeric composite microparticles were successfully coprecipitated by solution-enhanced dispersion by supercritical CO2 (SEDS), starting with a homogeneous organic solvent solution of lysozyme/poly(L -lactide)/poly(ethylene glycol) (lysozyme/PLLA/PEG). The effects of different drug loads (5, 8, and 12% w/w), PLLA Mw (10, 50, 100, and 200 kDa), PEG contents (0, 10, 30, and 50% PEG/(PLLA+PEG) w/w), and PEG Mw (400, 1000, and 4000 kDa) on the surface morphology, particle size, and drug release profile of the resulting composite microparticles were investigated. The results indicate that the size of the microparticles decreased and the rate of drug release increased with an increase in drug load, PEG content, or PEG Mw; the particle size first increased and then decreased with an increase in PLLA Mw, and the drug release was controlled by both particle size and PLLA Mw. The Fourier transform infrared spectrometer analysis and circular dichroism spectra measurement reveal that no significant changes occurred in the molecular structures during the SEDS processing, which is favorable to the production of protein–polymer composite microparticles for a protein drug delivery system. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
10.
11.
A series of novel poly(phthalazinone ether sulfone ketone)s was synthesized from bis(4-fluorophenyl) ketone, bis(4-chlorophenyl)sulfone, and 4-(4-hydroxybenzyl)-2,3-phthalazin-1-one through nucleophilic substitution polycondensation. The synthesized polymers exhibited surprisingly high glass transition temperatures and had excellent thermooxidative properties. The melt viscosities of these synthesized polymers are generally too high to be processed by common processing methods because of their very high glass transition temperatures and amorphous microstructure. An attempt was made to reduce their melt viscosities by solution blending the synthesized polymer with two kinds of oligomers: low molecular weight poly(phthalazinone ether sulfone ketone) and commercial poly(ether sulfone). The results proved that the addition of the oligomers to the polymers led to a marked decrease in melt viscosities. Furthermore, no obvious changes were observed in the thermal and mechanical properties of these blends after oligomer additions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1425–1432, 1997 相似文献
12.
Cui Liang Hitomi Hisatani Tatsuo Maruyama Yoshikage Ohmukai Tomohiro Sotani Hideto Matsuyama 《应用聚合物科学杂志》2010,116(1):267-279
The influence of chemical compositions on the properties of sulfonated poly(arylene ether sulfone)‐based proton‐exchange membranes was studied. First, we synthesized three different series of random SPAES copolymers using three kinds of hydrophobic monomers, including 4,4′‐dihydroxyldiphenylether, 2,6‐dihydroxynaphthalene (DHN), and 4,4′‐hexafluoroisopropylidenediphenol (6F‐BPA) to investigate effects of hydrophobic components on the properties of SPAES membranes as proton‐exchange membranes. Random SPAES copolymers with 6F‐BPA showed the highest proton conductivity while random SPAES copolymers with DHN displayed the lowest methanol permeability among the three random copolymers. Subsequently, we synthesized multiblock SPAES using the DHN as a hydrophobic monomer and studied the effect of the length of hydrophilic segments in the multiblock SPAES copolymers on membrane performance. The results indicated that longer hydrophilic segments in the copolymers led to higher water uptake, proton conductivity, and proton/methanol selectivity of membranes even at low humidity. In addition, the morphology studies (AFM and SAXS measurements) of membranes suggested that multiblock copolymers with long hydrophilic segments resulted in developed phase separation in membranes, and ionic clusters formed more easily, thus improving the membrane performance. Therefore, both the kinds of hydrophobic monomers and the length of hydrophilic segments in SPAES copolymers would influence the membranes performance as proton‐exchange membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
13.
Shunsuke Masaki Natsuko Sato Ai Nishichi Shinichi Yamazaki Kunio Kimura 《应用聚合物科学杂志》2008,108(1):498-503
Poly(aryl thioether)s (F‐PTEs) containing 2,3,5,6‐tetrafluoro‐1,4‐phenylene moiety and polar moiety, such as 1,3,4‐ozadiazole, ether ketone, and amide groups, were synthesized by nucleophilic aromatic substitution reaction of aryl fluorides and 4,4′‐thiobisbenzenthiol. F‐PTEs were amorphous with good thermal properties including high glass transition temperature (Tg) and thermal stability, solubility, and hydrophobicity. F‐PTEs were transformed into poly(aryl sulfone)s (F‐PSs) by the oxidation reaction with hydrogen peroxide in acetic acid. Because of the sulfone group, the Tgs of the F‐PSs were 30–40°C higher than those of the corresponding F‐PTEs. F‐PSs maintained solubility in polar aprotic solvents and exhibited hydrophobicity in spite of the content of polar sulfone groups due to the highly substituted fluorine atoms. These F‐PTEs and F‐PSs were a new class of high‐performance polymers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
14.
Binary blends of the sulfonated poly(ether ether ketone) (SPEEK)–poly(ether imide) (PEI) and SPEEK–polycarbonate (PC), and ternary blends of the SPEEK–PEI–PC, were investigated by differential scanning calorimetry. SPEEK was obtained by sulfonation of poly(ether ether ketone) using 95% sulfuric acid. From the thermal analysis of the SPEEK–PEI blends, single glass transition temperature (Tg) was observed at all the blend composition. For the SPEEK–PC blends, double Tgs were observed. From the results of thermal analysis, it is suggested that the SPEEK–PEI blends are miscible and the SPEEK–PC blends are immiscible. Polymer–polymer interaction parameter (χ12) of the SPEEK–PEI blends was calculated from the modified Lu and Weiss equation, and found to range from −0.011 to −0.825 with the blend composition. For the SPEEK–PC blends, the χ12 values were calculated from the modified Flory–Huggins equation, and found to range from 0.191 to 0.272 with the blend composition. For the SPEEK–PEI–PC ternary blends, phase separation regions that showed two Tgs were found to be consistent with the spinodal curves calculated from the χ12 values of the three binary blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2488–2494, 2000 相似文献
15.
Sulfonated poly(phthalazinone ether sulfone)s with high molecular weight were directly prepared by polycondensation of 4-(4-hydroxyphenyl) phthalazinone with various ratios of disodium 5.5′-sulfonylbis(2-fluoro-benzenesulfonate) to 4-fluorophenyl sulfone. The resulting ionomers with high IEC showed low swelling. The low swelling originates from intermolecular hydrogen bonds, which is confirmed by variable temperature IR spectroscopy. The membranes show very good perspectives in PEMFC applications. 相似文献
16.
Cui Liang Tatsuo Maruyama Yoshikage Ohmukai Tomohiro Sotani Hideto Matsuyama 《应用聚合物科学杂志》2009,114(3):1793-1802
Random and multiblock copolymers of sulfonated poly(arylene ether sulfone) (SPAES) were synthesized and characterized to compare the differences in the properties of proton‐exchange membranes made with random and multiblock SPAES copolymers. Atomic force microscopy observations and small‐angle X‐ray scattering measurements suggested the presence of nanoscale, clusterlike structures in the multiblock SPAES copolymers but not in the random SPAES copolymers. Proton‐exchange membranes were prepared from random and multiblock copolymers with various ion‐exchange capacities (IECs). The water uptake, proton conductivity, and methanol permeability of the SPAES membranes depended on the IECs of the random and multiblock SPAES copolymers. At the same IEC, the multiblock SPAES copolymers exhibited higher performances with respect to proton conductivity and proton/methanol permeation selectivity than the random SPAES copolymers. The higher performances of the multiblock SPAES copolymers were thought to be due to their clusterlike structure, which was similar to the ionic cluster of a Nafion membrane. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
17.
The quantitative syntheses of α‐bis and α,ω‐tetrakis tertiary diamine functionalized polymers by atom transfer radical polymerization (ATRP) methods are described. A tertiary diamine functionalized 1,1‐diphenylethylene derivative, 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1), was evaluated as a unimolecular tertiary diamine functionalized initiator precursor as well as a functionalizing agent in ATRP reactions. The ATRP of styrene, initiated by a new tertiary diamine functionalized initiator adduct (2), affords the corresponding α‐bis(4‐dimethylaminophenyl) functionalized polystyrene (3). The tertiary diamine functionalized initiator adduct (2) was prepared in situ by the reaction of (1‐bromoethyl)benzene with 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1) in the presence of a copper (I) bromide/2,2′‐bipyridyl catalyst system. The ATRP of styrene proceeded via a controlled free radical polymerization process to afford quantitative yields of the corresponding α‐bis(4‐dimethylaminophenyl) functionalized polystyrene derivative (3) with predictable number‐average molecular weight (Mn) and narrow molecular weight distribution (Mw/Mn) in a high initiator efficiency reaction. The polymerization process was monitored by gas chromatography analysis. Quantitative yields of α,ω‐tetrakis(4‐dimethylaminophenyl) functionalized polystyrene (4) were obtained by a new post ATRP chain end modification reaction of α‐bis(4‐dimethylaminophenyl) functionalized polystyrene (3) with excess 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1). The tertiary diamine functionalized initiator precursor 1,1‐bis[(4‐dimethylamino)phenyl]ethylene (1) and the different tertiary amine functionalized polymers were characterized by chromatography, spectroscopy and non‐aqueous titration measurements. Copyright © 2012 Society of Chemical Industry 相似文献
18.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005 相似文献
19.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) is a chemically resistant polymer and, therefore, an attractive material for the formation of membranes. However, membranes of unmodified PPO prepared by an immersion precipitation possess very low hydraulic permeabilities at the filtration processes. The membranes with higher hydraulic permeabilities can be prepared from sulfonated PPO and/or from blends of unsulfonated PPO and sulfonated PPO. In conclusion, the mechanism of the formation of membranes from blends of unsulfonated PPO and sulfonated PPO is suggested. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 161–167, 1999 相似文献
20.
A new graft copolymers poly(aryl ether sulfone)‐graft‐polystyrene (PSF‐g‐PS) and poly(aryl ether sulfone)‐graft‐[polystyrene‐block‐poly(methyl methacrylate)] (PSF‐g‐(PS‐b‐PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N‐dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF‐g‐PS and two glass transition temperatures were observed in the DSC curve of PSF‐g‐(PS‐b‐PMMA). The presence of PSF in PSF‐b‐PS or PSF‐g‐(PS‐b‐PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry 相似文献