首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pulverized coal combustion in O2/N2 and O2/CO2 environments was investigated with a drop tube furnace. Results present that the reaction rate and burn-out degree of O2/CO2 chars (obtained in O2/CO2 environments) are lower than that of O2/N2 chars (obtained in O2/N2 environments) under the same experimental condition. It indicates that a higher O2 concentration in O2/CO2 environment is needed to achieve the similar combustion characteristic to that in O2/N2 environment. The main differences between O2/N2 and O2/CO2 chars rely on the pore structure determined by N2 adsorption and chemical structure measured by FT-IR. For O2/CO2 char, the surface is thick and the pores are compact which contribute to the fragmentation reduction of particles burning in O2/CO2 environment. The organic functional group elimination rate from the surface of O2/CO2 chars is slower or delayed. The present research results might have important implications for further understanding the intrinsic kinetics of pulverized coal combustion in O2/CO2 environment.  相似文献   

2.
SO2 has been recognized as an effective reducing agent for N2O over iron-containing zeolite catalysts, lowering the operation temperature up to 100 K with respect to the direct N2O decomposition. This unique behavior contrasts with the common poisoning effect of SO2 over other active de-N2O metals (e.g. Co, Cu, Rh, and Ru). The formation of surface sulfates has been generally posed as the main cause for catalyst deactivation by SO2. Through the use of in situ infrared spectroscopy (DRIFTS), we show that steam-activated FeZSM-5 indeed builds up stable sulfate species during the N2O + SO2 reaction. Significant amounts of sulfur were detected in the used catalyst by elemental analysis and X-ray photoelectron spectroscopy. However, the enhanced N2O conversion is remarkably stable, indicating that the reducing action by SO2 and the sulfation of the surface are decoupled. The resulting sulfate species are thus spectators in the catalytic process and do not block or alter the structure of the active sites for N2O reduction and decomposition.  相似文献   

3.
Isothermal oscillations developed during N2O decomposition over Co-ZSM-5 catalysts with different Si/Al ratios have been investigated. Spontaneous oscillations were observed between 350 and 450 °C. The maximum amplitude has been obtained for the catalysts having Si/Al of 40 and 50. The activation energies of the obtained oscillations were calculated in respect to cobalt concentration. The results showed that the Ea values increase linearly with an increasing Si/Al ratio of the zeolite. For Co-ZSM-5 catalyst (Si/Al = 25), increasing cobalt content in the catalyst led to a decrease in the frequency as well as the amplitude of the oscillations. Meanwhile, the increase in the Ea values was observed. The calculated reaction rate was found to be first order with respect to nitrous oxide concentration. Moreover, the developed oscillations were found to be sensitive to inlet N2O concentration, catalyst weight and milling time duration. Decreasing the N2O inlet concentration as well as the catalyst weight and increasing the milling time would lead to a quenching of the developed oscillations.  相似文献   

4.
The O2/CO2 coal combustion technology is an innovative combustion technology that can control CO2, SO2 and NOx emissions simultaneously. Calcination and sintering characteristics of limestone under O2/CO2 atmosphere were investigated in this paper. The pore size, the specific pore volume and the specific surface area of CaO calcined were measured by N2 adsorption method. The grain size of CaO calcined was determined by XRD analysis. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere are less than that of CaO calcined in air at the same temperature. And the pore diameter of CaO calcined in O2/CO2 atmosphere is larger than that in air. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere increase initially with temperature, and then decline as temperature exceeds 1000 °C. The peaks of the specific pore volume and the specific surface area appear at 1000 °C. The specific surface area decreases with increase in the grain size of CaO calcined. The correlations of the grain size with the specific surface area and the specific pore volume can be expressed as L = 744.67 + 464.64 lg(1 / S) and L = − 608.5 + 1342.42 lg(1 / ε), respectively. Sintering has influence on the pore structure of CaO calcined by means of influencing the grain size of CaO.  相似文献   

5.
6.
Hao Liu 《Fuel》2003,82(11):1427-1436
Coal combustion with O2/CO2 is promising because of its easy CO2 recovery, extremely low NOx emission and high desulfurization efficiency. Based on our own fundamental experimental data combined with a sophisticated data analysis, its characteristics were investigated. It was revealed that the conversion ratio from fuel-N to exhausted NO in O2/CO2 pulverized coal combustion was only about one fourth of conventional pulverized coal combustion. To decrease exhausted NO further and realize simultaneous easy CO2 recovery and drastic reduction of SOx and NOx, a new scheme, i.e. O2/CO2 coal combustion with heat recirculation, was proposed. It was clarified that in O2/CO2 coal combustion, with about 40% of heat recirculation, the same coal combustion intensity as that of coal combustion in air could be realized even at an O2 concentration of as low as 15%. Thus exhausted NO could be decreased further into only one seventh of conventional coal combustion. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx could be realized with this new scheme.  相似文献   

7.
Hua Fei  Jun Xiang  Lushi Sun  Peng Fu  Gang Chen 《Fuel》2011,90(2):441-448
When predicting the variation of pore structure during O2/CO2 combustion of coal chars using the random pore model (RPM), it is impossible to calculate exactly the structure parameter ψ from the pore characteristics. The values of structure parameter ψ, which were calculated based on its fractal feature at various carbon conversions, should be almost constant. However, this investigation exhibited a drastic increase of ψ at the end of combustion reaction. In this work, structure parameter ψ of the RPM was modified according to the experimental analysis and a new model, fractal random pore model (FRPM), was constructed. Compared with other models such as RPM, discrete random pore model (DRPM), the Struis model (Model I) and the Liu model (Model II), it was found that fractal random pore model was more accurate to describe coal chars combustion, especially at higher conversions. Using the FRPM, O2/CO2 isotherm combustion of coal chars were analyzed at different temperatures.  相似文献   

8.
The corrosion behavior of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 was investigated using weight-loss measurements. As a comparison, the instantaneous corrosion rate in the early stages for iron in the same corrosion environment was measured by resistance relaxation method. Surface analyzes using SEM/EDS, XRD and XPS were applied to study the morphology and chemical composition of the corroded sample surface. Weight-loss method results showed that the corrosion rate of X70 steel samples increased with SO2 concentration, while the corrosion rate increased before decreasing with SO2 concentration for iron sample. Comparing resistance relaxation method results with weight-loss method results, it is found that the instantaneous corrosion rate of iron is much higher than the uniform corrosion rate of the iron tablet specimens which are covered with thick corrosion product films after a long period of corrosion. The corrosion product films were mainly composed of FeSO4 and FeSO3 hydrates. The possible reaction mechanism under such environment was also analyzed, and the electrochemical reaction between the dissolved SO2 in the condensed water film with iron is the critical reaction step.  相似文献   

9.
New hydrotalcite-like materials containing magnesium, chromium, and/or iron were synthesized by the coprecipitation method and then thermally transformed into mixed metal oxides. The obtained catalysts were characterized with respect to chemical composition (XRF), structural (XRD, Mössbauer spectroscopy) and textural (BET) properties. The catalytic performance of the hydrotalcite-derived oxides was tested in the N2O decomposition and the N2O reduction by ethylbenzene. An influence of N2O/ethylbenzene molar ratio on the process selectivity was studied. The relationship between catalytic performance and structure of catalysts was discussed.  相似文献   

10.
A simple static technique was used to obtain the solubility of cetirizine in supercritical carbon dioxide. The solubility measurements were performed at temperatures and pressures ranging from 308.15 to 338.15 K and 160 to 400 bar, respectively; resulting in mole fractions in the 1.05 × 10−5 to 4.92 × 10−3 range. The Chrastil, Bartle, Kumar & Johnston and the Mendez-Santiago and Teja (MST) models were used to correlate the experimental data. The calculated solubilities showed good agreement with the experimental data in the temperature and pressure ranges studied.  相似文献   

11.
Wen Cao  Danxing Zheng   《Fuel》2007,86(17-18):2864-2870
This paper proposes a novel power cycle system composed of chemical recuperative cycle with CO2–NG (natural gas) reforming and an ammonia absorption refrigeration cycle. In which, the heat is recovered from the turbine exhaust to drive CO2–NG reformer firstly, and then lower temperature heat from the turbine exhaust is provided with the ammonia absorption refrigeration system to generate chilled media, which is used to cool the turbine inlet gas except export. In this paper, a detailed thermodynamic analysis is carried out to reveal the performance of the proposed cycle and the influence of key parameters on performance is discussed. Based on 1 kg s−1 of methane feedstock and the turbine inlet temperature of 1573 K, the simulation results shown that the optimized net power generation efficiency of the cycle rises up to 49.6% on the low-heating value and the exergy efficiency 47.9%, the new cycle system reached the net electric-power production 24.799 MW, the export chilled load 0.609 MW and 2.743 kg s−1 liquid CO2 was captured, achieved the goal of CO2 and NOx zero-emission.  相似文献   

12.
Supercritical CO2 extraction of Plumula nelumbinis oil was investigated at temperatures of 308–338 K and pressures of 15–45 MPa. The yield of the extracted oil was 0.128 g/g material at optimal conditions, in which gamma-sitosterol, unsaturated fatty acids and gamma-tocopherol had higher relative concentrations as determined by GC–MS. The broken and intact cell (BIC) model, with reduced adjustable parameters, was utilized to simulate the SFE process. The values of average absolute relative deviation (AARD) were in the range 2.34–10.9%, indicating that the improved method had a similar effect to the BIC model when three parameters were adjusted. The parameters obtained during the modeling had clear physical meanings and were used to gain an in-depth understanding of the SFE process theoretically.  相似文献   

13.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

14.
This paper describes the selective oxidation of ammonia into nitrogen over copper, silver and gold catalysts between room temperature and 400 °C using different NH3/O2 ratios. The effect of addition of CeOx and Li2O on the activity and selectivity is also discussed. The results show that copper and silver are very active and selective toward N2. However the multicomponent catalysts: M/Li2O/CeOx/Al2O3 (M: Au, Ag, Cu) perform the best. On all three metal containing catalysts the activity and selectivity is influenced by the particle size and the interaction between metal particles and support.  相似文献   

15.
Oxidation of bulk samples of 〈Al〉 by water and H2O/CO2 mixture at sub- and supercritical conditions for uniform temperature increase and at the injection of H2O (665 K, 23.1 MPa) and H2O/CO2 (723 K, 38.0 MPa) fluids into the reactor has been studied. Transition of 〈Al〉 into AlOOH and Al2O3 nanoparticles has been found out. Aluminum samples oxidized by H2O and H2O/CO2 fluids at the injection mostly consist of large particles (300-500 nm) of α-Al2O3. Those oxidized for uniform temperature increase contain smaller particles (20-70 nm) of γ-Al2O3 as well. Mechanism of this phenomenon is explained by orientation of oxygen in H2O polar molecules to the metal in the electric field of contact voltage at Al/AlOOH and Al/Al2O3 boundary. Addition of CO2 to water resulted in CO, CH4, CH3OH and condensed carbon, increase in size of Al2O3 nanoparticles and significant decrease in time delay. In pure CO2 〈Al〉 oxidation resulted in oxide film. Using temperature and time dependences of gaseous reactant pressure and Redlich-Kwong state equation, kinetics of H2 formation has been described and oxidation regularities determined. At aluminum oxidation by H2O and H2O/CO2 fluids, self-heating of the samples followed by oxidation rate increase has been registered. The samples of oxidized aluminum have been studied with a transmission electronic microscope, a thermal analyzer and a device for specific surface measurement. The effect of oxidation conditions on the characteristics of synthesized nanoparticles has been found out.  相似文献   

16.
The removal of N2O by a pulsed corona reactor (PCR) was investigated. Gas mixtures containing N2O were allowed to flow in the reactor at various levels of energy input, and for different background gases, flow rates, and initial pollutant concentrations. The reactor effluent gas stream was analyzed for N2O, NO, NO2, by means of an FTIR spectrometer. It was found that destruction of N2O was facilitated with argon as the background gas; the conversion dropped and power requirements increased when nitrogen was used as the background gas.Reaction mechanisms are proposed for the destruction of N2O in dry argon and nitrogen. Application of the pseudo-steady state hypothesis permits development of expressions for the overall reaction rate in these systems. These reaction rates are integrated into a simple reactor model for the pulsed corona discharge reactor. The reactor model brings forth the coupling between reaction rates, electrical discharge parameters, and fluid flow within the reactor. Comparison with experiment is encouraging, though the needs for additional research are clearly identified.  相似文献   

17.
In situ measurements of the ionic conductivity were performed on polyethers, poly(ethylene oxide) (PEO) and poly(oligo oxyethylene methacrylate) (PMEO), with lithium triflate (LiCF3SO3) as crystalline and amorphous electrolytes, and at CO2 pressures up to 20 MPa. Both PEO and PMEO systems in subcritical and supercritical CO2 increased more than five fold in ionic conductivity at 40 °C composed to atmospheric pressure. The pressure dependence of the ionic conductivity for PEO electrolytes was positive under CO2, and increased by two orders of magnitude under pressurization from 0 to 20 MPa, whereas it decreases with increasing pressure of N2. The enhancement is caused by the plasticizing effect of CO2 molecules that penetrate into the electrolytes.  相似文献   

18.
The interactions between CO2 and carbonyl compounds at different CO2 pressures have been studied both experimentally and theoretically. In situ high-pressure FTIR on carbonyl compounds, i.e., acetaldehyde, acetone, and crotonaldehyde, in supercritical CO2 have been measured at various CO2 pressures varying from 6 to 22 MPa. In order to get insights into the mechanism, theoretical study has been conducted concerning the effect of CO2 on frequency shift of CO in acetaldehyde, acetone, benzaldehyde, crotonaldehyde and cinnamaldehyde at different CO2 pressures. It has been shown that the experimental frequency shifts can be well simulated by the theoretical model calculations using particular structures, in which a carbonyl compound interacts with a few CO2 molecules, depending on the carbonyl compounds examined, except for acetaldehyde.The interaction energies between CO2 and those carbonyl compounds are also given. In addition, the effect of CO2 on hydrogenation of crotonaldehyde and benzaldehyde has been discussed by means of the local softness (s+) calculated at CO2 pressures of 0-22 MPa, which can explain the reactivity difference in the crotonaldehyde and benzaldehyde hydrogenations in supercritical CO2.  相似文献   

19.
Donghai Sun  Ying Huang 《Polymer》2004,45(11):3805-3810
Monomer mixture of styrene (St) and N-cyclohexylmaleimide (ChMI) and initiator benzoyl peroxide (BPO) were first impregnated into isotactic polypropylene (iPP) films simultaneously using supercritical carbon dioxide (SC CO2) as a solvent and swelling agent at 35.0 °C. The composites were obtained after the monomers were grafted onto the iPP matrix at 70 °C. The effects of various conditions, such as pressure, monomer concentration, and the molar ratio of the two monomers in the soaking process, on the composition of the composites were determined. The molar ratios of St to ChMI in the composites were estimated by Fourier transform infrared spectroscopy. The thermal properties, the morphology, and the mechanical properties of the composites were characterized by different techniques. The results demonstrated that the phase size of the grafted St-ChMI was very small and the phase boundary was very ambiguous. The composites had better thermal stability than the original iPP film. The Young's modulus and tensile strength of the film increased continuously with increasing grafting percentage. The two grafted monomers in the composites had good synergetic effect.  相似文献   

20.
Using a manometric experimental setup, high-pressure sorption measurements with CH4 and CO2 were performed on three Chinese coal samples of different rank (VRr = 0.53%, 1.20%, and 3.86%). The experiments were conducted at 35, 45, and 55 °C with pressures up to 25 MPa on the 0.354-1 mm particle fraction in the dry state. The objective of this study was to explore the accuracy and reproducibility of the manometric method in the pressure and temperature range relevant for potential coalbed methane (CBM) and CO2-enhanced CBM (CO2-ECBM) activities (P > 8 MPa, T > 35 °C). Maximum experimental errors were estimated using the Gauss error propagation theorem, and reproducibility tests of the high-pressure sorption measurements for CH4 and CO2 were performed. Further, the experimental data presented here was used to explicitly study the CO2 sorption behaviour of Chinese coal samples in the elevated pressure range (up to 25 MPa) and the effects of temperature on supercritical CO2 sorption isotherms.The experiments provided characteristic excess sorption isotherms which, in the case of CO2 exhibit a maximum around the critical pressure and then decline and level out towards a constant value. The results of these manometric tests are consistent with those of previous gravimetric sorption studies and corroborate a crossover of the 35, 45, and 55 °C CO2 excess sorption isotherms in the high-pressure range. The measurement range could be extended, however, to significantly higher pressures. The excess sorption isotherms tend to converge, indicating that the temperature dependence of CO2 excess sorption on coals at high-pressures (>20 MPa) becomes marginal. Further, all CO2 high-pressure isotherms measured in this study were approximated by a three-parameter excess sorption function with special consideration of the density ratio of the “free” phase and the sorbed phase. This function provided a good representation of the experimental data.The maximum excess sorption capacity of the three coal samples for methane ranged from 0.8 to 1.6 mmol/g (dry, ash-free) and increased from medium volatile bituminous to subbituminous to anthracite. The medium volatile bituminous coal also exhibited the lowest overall excess sorption capacity for CO2. However, the subbituminous coal was found to have the highest CO2 sorption capacity of the three samples. The mass fraction of adsorbed substance as a function of time recorded during the first pressure step was used to analyze the kinetics of CH4 and CO2 sorption on the coal samples. CO2 sorption proceeds more rapidly than CH4 sorption on the anthracite and the medium volatile bituminous coal. For the subbituminous coal, methane sorption is initially faster, but during the final stage of the measurement CO2 sorption approaches the equilibrium value more rapidly than methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号