共查询到20条相似文献,搜索用时 15 毫秒
1.
The TMI-2 accident demonstrated that a significant quantity of molten core debris could drain into the lower plenum during a severe accident. For such conditions, the Individual Plant Examinations (IPEs) and severe accident management evaluations, consider the possibility that water could not be injected to the RCS. However, depending on the plant specific configuration and the accident sequence, water may be accumulated within the containment sufficient to submerge the lower head and part of the reactor vessel cylinder. This could provide external cooling of the RPV to prevent failure of the lower head and discharge of core debris into the containment.This paper evaluates the heat removal capabilities for external cooling of an insulated RPV in terms of (a) the water inflow through the insulation, (b) the two-phase heat removal in the gap between the insulation and the vessel and (c) the flow of steam through the insulation. These results show no significant limitation to heat removal from the bottom of the reactor vessel other than thermal conduction through the reactor vessel wall. Hence, external cooling is a possible means of preventing core debris from failing the reactor, which if successful, would eliminate the considerations of ex-vessel steam explosions, debris coolability, etc. and their uncertainties. Therefore, external cooling should be a major consideration in accident management evaluations and decision-making for current plants, as well as a possible design consideration for future plants. 相似文献
2.
Failure strains and proposed limit strains for an reactor pressure vessel under severe accident conditions 总被引:1,自引:0,他引:1
R. Krieg 《Nuclear Engineering and Design》2005,235(2-4):199-212
The local failure strains of essential design elements of a reactor vessel are investigated. The size influence of the structure is of special interest. Typical severe accident conditions including elevated temperatures and dynamic loads are considered.The main part of work consists of test families with specimens under uniaxial and biaxial load. Within one test family the specimen geometry and the load conditions are similar, but the size is varied up to reactor dimensions. Special attention is given to geometries with a hole or a notch causing non-uniform stress and strain distributions typical for the reactor vessel. A key problem is to determine the local failure strain. Here suitable methods had to be developed including the so-called “vanishing gap method”, and the “forging die method”. They are based on post-test geometrical measurements of the fracture surfaces and reconstructions of the related strain fields using finite element models.The results indicate that stresses versus dimensionless deformations are approximately size independent up to failure for specimens of similar geometry under similar load conditions. Local failure strains could be determined. The values are rather high and size dependent. Statistical evaluation allow the proposal of limit strains which are also size dependent. If these limit strains are not exceeded, the structures will not fracture. 相似文献
3.
4.
The stress corrosion cracking (SCC) behaviour of different reactor pressure vessel (RPV) steels and weld filler/heat-affected zone materials was characterized under simulated boiling water reactor (BWR) normal water (NWC) and hydrogen water chemistry (HWC) conditions by periodical partial unloading, constant and ripple load tests with pre-cracked fracture mechanics specimens. The experiments were performed in oxygenated or hydrogenated high-purity or sulphate/chloride containing water at temperatures from 150 to 288 °C. In good agreement with field experience, these investigations revealed a very low susceptibility to SCC crack growth and small crack growth rates (<0.6 mm/year) under most BWR/NWC and material conditions. Critical water chemistry, loading and material conditions, which can result in sustained and fast SCC well above the ‘BWRVIP-60 SCC disposition lines’ were identified, but many of them generally appeared atypical for current optimized BWR power operation practice or modern RPVs. Application of HWC always resulted in a significant reduction of SCC crack growth rates by more than one order of magnitude under these critical system conditions and growth rates dropped well below the ‘BWRVIP-60 SCC disposition lines’. 相似文献
5.
Vincent Koundy Cataldo Caroli Philippe Matheron Michel Coret 《Nuclear Engineering and Design》2008,238(9):2411-2419
In PWR severe accident scenarios, involving a relocation of corium (core melt) into the lower head, the possible failure mode of the reactor pressure vessel (RPV), the failure time, the failure location and the final size of the breach are regarded as key elements, since they play an important part in the ex-vessel phase of the accident.Both the LHF and OLHF experiments as well as the FOREVER experiments revealed that initiation of the failure is typically local. For the case of a uniform temperature distribution in the lower head, crack initiation occurs in the thinnest region and for the case of a non-uniform temperature distribution, it initiates at the highest temperature region. These experimental results can be modelled numerically (but more accurately with 3D finite element codes). The failure time predictions obtained using numerical modelling agree reasonably well with the experimental values.However, the final size of the failure is still an open issue. Analyses of both the LHF and OLHF experimental data (as well as of that from the FOREVER experiments) do not enable an assessment of the final size of the breach (in relation with the testing conditions and results).Indeed, the size of breach depends on the mode of crack propagation which is directly related to the metallurgical characteristics of the RPV steel. Small changes in the initial chemical composition of the vessel material can lead to different types of rupture behaviour at high temperatures. Different rupture behaviours were observed in the LHF and OLHF experiments using the SA533B1 steel. Similar observations were previously noticed during a CEA material characterization programme on the 16MND5 steel. To determine crack propagation and final failure size, 3D modelling would thus be needed with an adequate failure criterion taking into account the variability in behaviour of the RPV material at high temperatures.This paper presents an outline of the methodology being used in a current research programme of IRSN, in partnership with CEA and INSA Lyon. The aim is to model crack opening and crack propagation in French RPV lower head vessels under severe accidents conditions. This programme was initiated in 2003 and is made up of five main sections, namely an inventory of the different French PWR lower head materials, metallurgical investigations to better understand the cause of mechanical behaviour variability that is observed and related to material microstructure, Compact Tension (CT) testing of specimens to characterize the tear resistance of the material, validation of the modelling using experiments on tube specimens and the development of a new failure criterion for the 3D finite element models. 相似文献
6.
7.
Using closed-form solution techniques, models were developed for assessing the thermal and structural response of light water reactor (LWR) vessels and penetrations during severe accident conditions. Results from models are displayed as failure maps, generally developed in terms of non-dimensional groups, so that a broader range of reactor design parameters and severe accident conditions can be considered. In this paper, failure maps are used to compare LWR vessel response to three accident conditions. Results discussed within this paper illustrate the importance of vessel and tube geometrical parameters and material properties for predicting which vessel failure mode occurs first. 相似文献
8.
V. D. Loktionov E. S. Mukhtarov N. I. Yaroshenko V. E. Orlov 《Nuclear Engineering and Design》1999,191(1):31
Analysis of the WWER lower head behaviour and its failure has been performed for several molten pool structures and internal overpressure levels in a reactor pressure vessel (RPV). The different types of the molten pools (homogeneous, conventionally homogeneous, conventionally stratified, stratified) cover the bounding scenarios during a hypothetical severe accident. The parametric investigations of the failure mode and RPV behaviour for various molten pool types, its heights and internal overpressure levels are presented herein. A coupled treatment in this investigation includes: (i) a 2-D thermohydraulic analysis of a molten pool natural convection. Domestic NARAUFEM code has been used in this detailed analysis for prediction of the heat flux from the molten pool to the RPV inner surface; and (ii) a detailed 3-D transient thermal analysis of the RPV lower head. Domestic 3-D ASHTER-VVR finite element code has been used for the numerical simulations of the high temperature creep and failure of the lower head. The effect of an external RPV cooling, temperature-dependent physical properties of the molten pool and vessel steel, the hydrostatic forces and vessel dead-weight were taken into account in this study. The obtained results show that lower head failure occurs as a result of the vessel creep process which is significantly dependent on both an internal overpressure level and the type of molten pool structure. In particular, it was found that there were combinations of ‘overpressure-molten pool structure’ when the vessel failure started at the ‘hot’ layers of the vessel. It was shown in this study that the processes in the molten pools reach a quasistationary state at 2000…3000 s after molten pool formation. Numerical results in this paper illustrate that the large creep deformations of the vessel lower head can lead to an appearance of the gaps between the vessel surface and the molten pool crust. It is obvious that the joint thermal and structural analyses are needed for the accurate tracing of the initial bounds of the vessel and molten pool during simulations. 相似文献
9.
This study assesses the two-dimensional thermal response of a BWR vessel and drain line penetration to three types of debris bed; primarily metallic, primarily ceramic and metallic and ceramic layered, with sensitivity studies for the most severe case. Structural finite element analysis evaluates vessel elastic, plastic and creep response for two cases which bound the thermal challenge to the vessel.Thermal analysis results indicate that drain line failure does not occur for the case when metallic debris relocates to the lower head; structural analysis predicts that the vessel also remains intact for this case. In cases where ceramic debris relocates to the lower head, drain line temperatures peak near values where failure may occur within several minutes; whereas vessel failure is not predicted for 3.5 to 4.0 hours. Sensitivity studies indicate that large porosity debris or high heat removal rates from the vessel and drain line outer surfaces can preclude failure temperatures from occurring. 相似文献
10.
R. Krieg J. Devos C. Caroli G. Solomos P. J. Ennis D. Kalkhof 《Nuclear Engineering and Design》2001,209(1-3)
In order to allow more reliable predictions on the lower head response under core melt-down conditions, the temperature distribution has been analysed including the natural convection in the corium pool. Furthermore, the mechanical models and the failure criteria have been improved based on the RUPTHER and FASTHER experiments where typical temperature gradients are simulated. Lower head local melting as well as corium crust development has been addressed in the CORVIS experiments studying the contact between an alumina/iron thermite and a thick steel plate. The upper head loading by corium impact due to a postulated in-vessel steam explosion has been investigated by the BERDA experiments. Similarity rules were considered such that the results can be directly converted to reactor conditions. Based on these investigations admissible steam explosion energy releases are determined which the upper head can carry. If these limits are not exceeded the reactor containment cannot be endangered by broken head fragments. To provide the necessary basic data, mechanical material tests have been performed. 相似文献
11.
Brian R. Bowsher 《Progress in Nuclear Energy》1987,20(3):199-233
This review considers fission-product chemistry and aerosol behaviour in the primary circuit of a pressurized water reactor (PWR) during severe accidents. Three key accident sequences (V, TMLB' and S2D) are considered, and their principal thermal-hydraulic and physical characteristics affecting chemistry behaviour are identified. The inventories, chemical forms and timing of fission products released from the fuel are summarized together with the major sources of structural materials and their release characteristics. The chemistry of each main fission-product species within the primary circuit is reviewed from available experimental and thermodynamic data and/or theoretical predictions. Modelling studies of primary circuit fission-product behaviour are reviewed briefly and the principal requirements for further study assessed with respect to experimental and modelling programmes currently in progress. 相似文献
12.
As a part of a study on a two-phase natural circulation flow between the outer reactor vessel and the insulation material in the reactor cavity under an external reactor vessel cooling of the Advanced Power Reactor (APR) 1400, a Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow-HALF scale (HERMES-HALF) experiment has been performed by using the non-heating method of an air injection. This large-scale experiment uses a half-height and half-sector model of the APR1400. This experiment has been analyzed to verify and evaluate the experimental results by using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that the water circulation mass flow rate is very similar to the experimental results of the HERMES-HALF, in general. Increases in the water inlet area and the water level in the reactor cavity lead to an increase in the water circulation mass flow rate. The effects of an air injection mass flow rate and the water outlet area on the water circulation mass flow rate are dependent on the water inlet area size. As the water outlet moves to a lower position, the water circulation mass flow rate increases slowly. 相似文献
13.
Since the suggestion of external reactor vessel cooling (ERVC), the effects of melting and cooling on the response of structural integrity of the reactor pressure vessel (RPV) under core melting accident conditions have been investigated. To investigate the initial behavior of RPV lower head and the effects of analysis conditions on the structural integrity of RPV, the transient analysis is utilized considering the transient state. To obtain an analogy with real phenomena, the material properties were determined by combining and modifying the existing results considering phase transformation and temperature dependency. The temperature and stress analyses are performed for core melting accident by using ABAQUS. Finally, the potential for vessel damage is discussed using the Larson-Miller curve and damage rule. In addition, the results by transient analysis are compared with those by steady state analysis and the effects of analysis conditions on structural integrity are reviewed. 相似文献
14.
During severe accident of a light water reactor (LWR), the piping of the reactor cooling system would be damaged when the piping is subjected to high internal pressure and very high temperature, resulted from high temperature gas generated in a reactor core and decay heat released from the deposit of fission products. It is considered that, under such a condition, short-term creep at high temperatures would cause the piping failure. For the evaluation of piping integrity under a severe accident, a method to predict such high temperature short-term creep deformation should be developed, using a creep constitutive equation considering tertiary creep. In this paper, the creep constitutive equation including tertiary creep was applied to nuclear-grade cold-drawn pipe of 316 stainless steel (SUS316), based on the isotropic damage mechanics proposed by Kachanov and Ravotnov. Tensile creep test data for the material of a SUS316 cold-drawn pipe were used to determine the coefficients of the creep constitutive equation. Using the constitutive equation taking account of creep damage, finite element analyses were performed for the local creep deformation of the coolant piping under two types of conditions; uniform temperature (isothermal condition) and temperature gradient of circumferential direction (non-isothermal condition). The analytical results show that the damage variable integrated into the creep constitutive equation can predict the pipe failure in the test performed by Japan Atomic Energy Research Institute, in which failure occurred from the outside of the pipe wall. 相似文献
15.
Philippe Matheron Stéphane Chapuliot Laetitia Nicolas Vincent Koundy Cataldo Caroli 《Nuclear Engineering and Design》2012
In the event of a severe core meltdown accident in a pressurised water reactor (PWR), core material can relocate into the lower head of the vessel resulting in significant thermal and pressure loads being imposed on the vessel. In the event of reactor pressure vessel (RPV) failure there is the possibility of core material being released towards the containment.On the basis of the loading conditions and the temperature distribution, the determination of the mode, timing, and size of lower head failure is of prime importance in the assessment of core melt accidents. This is because they define the initial conditions for ex-vessel events such as core/basemat interactions, fuel/coolant interactions, and direct containment heating. When lower head failure occurs (i) the understanding of the mechanism of lower head creep deformation; (ii) breach stability and its kinetic of propagation leading to the failure; (iii) and developing predictive modelling capabilities to better assess the consequences of ex-vessel processes, are of equal importance.The objective of this paper is to present an original characterization programme of vessel steel tearing properties by carrying out high temperature tearing tests on Compact Tension (CT) specimens.The influence of metallurgical composition on the kinetics of tearing is investigated as previous work on different RPV steels has shown a possible loss of ductility at high temperatures depending on the initial chemical composition of the vessel material. Small changes in the composition can lead to different types of rupture behaviour at high temperatures.The experimental programme has been conducted on various French RPV 16MND5 steels for temperatures ranging from 900 °C to 1100 °C. Comparisons between the tests performed on these various 16MND5 steels show that this approach is appropriate to characterize the difference in ductility observed at high temperatures.The aim of this experimental study is also to contribute to the definition of a tearing criterion by identifying, on the basis of CT results, the related material parameters at temperatures representative of the real severe accident conditions.This experimental campaign has been carried out in partnership with IRSN in the framework of a research programme whose purpose is to complete the mechanical properties database of 16MND5 steel and to model tearing failure in French RPV lower head vessels under severe conditions (Koundy et al., 2008). 相似文献
16.
T. Saito M. Akasaka O. Maekawa Y. Kanazawa K. Matsumura Y. Takahashi H. Uozumi 《Nuclear Engineering and Design》1994,153(1)
The reactor internal recirculation pump (RIP) used in the advanced boiling water reactor (ABWR) design is a glandless wet-motor type pump and is evolved from the pump used in the ABB-A BWRs. On the basis of the proven design viewpoint, the pump nozzle at the bottom head of the ABWR reactor pressure vessel (RPV) to which the RIP is attached is designed as a sleeve-type nozzle as used in the ABB-A BWRs. Several improvements have been made over the ABB-A original nozzle design such as elimination of the weld between the RPV bottom head and nozzle stub (by integral forging) and modification of the weld design (optimization of weld preparation suitable to automatic machine welding and use of insert ring for quality welding). Extensive experimental and analytical studies and the development of machining tools for the penetration bead (the back side of the weld) to inspect the qualification of welding have been performed in Japan with the RIP and the RPV nozzle to confirm the adequacy of the ABWR RIP and the RPV nozzle design. 相似文献
17.
F. Funke G.-U. Greger S. Hellmann A. Bleier W. Morell 《Nuclear Engineering and Design》1996,166(3):4026
Owing to large surface areas, the reaction of volatile molecular iodine (I2) with steel surfaces in the containment may play an important role in predicting the source term to the environment. Both wall retention of iodine and conversion of volatile into non-volatile iodine compounds at steel surfaces have to be considered. Two types of laboratory experiment were carried out at Siemens (KWU) in order to investigate the reaction of I2 at steel surfaces representative for German power plants.
1.
(1) For steel coupons submerged in an I2 solution at T = 50, 90 or 140 °C the reaction rate of the I2−I− conversion was determined. No iodine loading was observed on the steel in the aqueous phase tests. I2 reacts with the steel components (Fe, Cr or Ni) to form metal iodides on the surface which are all immediately dissolved in water under dissociation into the metal and the iodide ions. From these experiments, the I2−I− conversion rate constants over the temperature range 50–140 °C as well as the activation energy were determined. The measured data are suitable to be included in severe accident iodine codes such as IMPAIR. 2.
(2) Steel tubes were exposed to a steam-I2 flow under dry air at T = 120 °C and steam-condensing conditions at T = 120 and 160 °C. In dry air, I2, was retained on the steel surface and a deposition rate constant was measured. Under steam-condensing conditions there is an effective conversion of volatile I2 to non-volatile I− which is subsequently washed off from the steel surface. The I2−T− conversion rate constants suitable for modelling this process were determined. No temperature dependence was found in the range 120–160 °C.
18.
In this study,the severe accident progression analysis of generic Canadian deuterium uranium reactor 6 was preliminarily provided using an integrated severe accident analysis code.The selected accident sequences were multiple steam generator tube rupture and large break loss-of-coolant accidents because these led to severe core damage with an assumed unavailability for several critical safety systems.The progressions of severe accident included a set of failed safety systems normally operated at full power,and initiative events led to primary heat transport system inventory blow-down or boil off.The core heat-up and melting,steam generator response,fuel channel and calandria vessel failure were analyzed.The results showed that the progression of a severe core damage accident induced by steam generator tube rupture or large break loss-of-coolant accidents in a CANDU reactor was slow due to heat sinks in the calandria vessel and vault. 相似文献
19.
Youngsuk Bang Byungchul Lee Kwang-Il Ahn 《Journal of Nuclear Science and Technology》2013,50(8):857-866
A severe accident has inherently significant uncertainties due to the complex phenomena and wide range of conditions. Because of its high temperature and pressure, performing experimental validation and practical application are extremely difficult. With these difficulties, there has been few experimental researches performed and there is no plant-specific experimental data. Instead, computer codes have been developed to simulate the accident and have been used conservative assumptions and margins. This study is an effort to reduce the uncertainty in the probabilistic safety assessment and produce a realistic and physical-based failure probability. The methodology was developed and applied to the OPR1000. The creep rupture failure probabilities of reactor coolant system (RCS) components were evaluated under a station blackout severe accident with all powers lost and no recovery of steam generator auxiliary feed-water. The MELCOR 1.8.6 code was used to obtain the plant-specific pressure and temperature history of each part of the RCS and the creep rupture failure times were calculated by the rate-dependent creep rupture model with the plant-specific data. 相似文献
20.
The different toughness tests performed on two pressure vessel steels with very different upper shelves served to make a number of observations concerning the shifts in the transition temperature due to the effect of irradiation, as well as changes in toughness with temperature in the ductile region.With respect to shifts in the transition temperature, the following was observed: the shift obtained with precracked charpy test specimens was narrower than with the others; the shift obtained with charpy V impact tests was substantially equal to that obtained with CT test specimens — wider in the case of steel A, but slightly narrower in that of steel H.With respect to toughness values in the ductile region: the toughness values obtained using precracked charpy test specimens are significantly higher than those obtained with CT test specimens for static tests; 25and 12.5 mm thick CT test specimens display comparable variations in J1C and dJ/da, but with wide scattering; the effect of irradiation, if any, is of the same order of magnitude as the scattering of the results — however, a test temperature effect is observed; the variation in toughness with temperature is determined more easily by considering a J value corresponding to a stable crack propagation of 1 mm, so that ; this variation of JΔal with temperature is substantially the same for both steels, or about −30% at 70 or 80°C, and −50% at 290°C. 相似文献