首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FDTD modeling of common-mode radiation from cables   总被引:4,自引:0,他引:4  
Radiation from cables attached to printed circuit boards and shielding enclosures is among the primary concerns in meeting FCC Class A and B limits. The finite-difference time-domain (FDTD) method can be employed to model radiation from printed circuit boards and shielding enclosures with complex geometries, but difficulties in modeling wires and cables of arbitrary radii are encountered. Modeling the wire by setting the axial component of the electric field to zero in the FDTD method results in an effective wire radius that is determined by the mesh discretization. Neglecting the wire radius in applications, such as electromagnetic interference (EMI) or printed circuit board modeling, may result in gross errors because near-field quantities are typically sensitive to wire thickness. Taflove et al. (1988) have developed a subcellular FDTD algorithm for modeling wires that has been shown to work well for plane wave scattering. The method uses a quasistatic field approximation to model wires with a well defined radius independent of the mesh dimensions. The wire model is reviewed and investigated for application to common-mode radiation from cables attached to printed circuit boards, where the source is often a noise voltage at the connector. Also investigated is energy coupling to attached cables through enclosure apertures resulting in common-mode radiation from the cable. The input impedance for a center-fed dipole antenna, as well as a monopole connected to a conducting half-sheet, is computed with FDTD methods and compared to moment method input impedance results. A simulation of a shielding enclosure with an attached cable demonstrates the utility of FDTD analysis in modeling common-mode radiation  相似文献   

2.
A hybrid time-domain method is proposed for characterizing electromagnetic interference (EMI) signals coupled into some composite structures with metallic enclosures, braided shielded cable, printed circuit boards, and even lumped active devices. In order to rapidly capture the induced interior EMI, the finite-difference time-domain, modified node analysis, and multiconductor transmission lines methods are combined together and implemented successfully. Numerical investigation is carried out to demonstrate the frequency-dependent transfer impedance of the coaxial cable, the induced voltage at the place of active loaded element in the transmission line network, and the enclosure shielding effectiveness of these composite enclosures. The captured transient response information is useful for further designing electromagnetic protection of the inner circuits against the impact of voltage or current surge caused by nonintentional as well as intentional electromagnetic interference.   相似文献   

3.
In situations where several high-power transmitters and their antennas are to be used near one another, a certain amount of mutual interference can be expected. An instance of particular interest is that of high-intensity radiation inducing standing waves between the shields of nearby coaxial cables and a metal deck of ground plane. Standing waves induced may cause high potentials and possible breakdown at the ends of the cable, damaging connectors and antennas. There may also be some reduction of the shielding effectiveness of the coaxial cable when high-voltage standing waves are present in the shield. It has been common practice to eliminate such standing waves by periodic grounding of the outer conductor of the coaxial cable. This, however, requires penetration of the insulation material on the cable and formation of metal-to-metal joints on the shield. This is not only an inconvenient method of installation, but is also undesirable around salt water. Copper shielding will corrode, and corrosion at the joint of the dissimilar metal can cause nonlinear interference effects. The standing waves induced in the transmission system formed by the cylindrical shield of a coaxial cable and a conducting plane are examined theoretically and experimentally as a function of the shield-to-ground impedance at the end points only (Z1 and Z2 of Fig. 1). Ordinarily, standing waves are eliminated by terminating a guiding system in its characteristic impedance. In this situation, however, the exciting source (i.e., incident radiation) is distributed along the length of the transmission system.  相似文献   

4.
Frequency- and time-domain expressions for the transfer impedance of single conductor shielded cables are proposed. The time-domain convolution needed for the evaluation of the distributed longitudinal voltage induced on the internal conductor of the cable is directly evaluated by means of an equivalent SPICE circuit that can be incorporated in already existing shielded coaxial cables circuit models.  相似文献   

5.
Stacked-card and modules-on-backplane printed circuit-board geometries are advantageous for conserving real-estate in many designs. Unfortunately, at high frequencies, electromagnetic magnetic interference (EMI) resulting from the nonnegligible impedance of the signal return at the connector may occur. This effective EMI coupling path results in the daughtercard being driven against the motherboard and attached cables, resulting in common-mode radiation. The connector geometry can be modified to minimize the EMI coupling path when high frequencies are routed between the motherboard and daughtercard. Current speeds and printed circuit board (PCB) sizes result in geometries that are of significant dimensions in terms of a wavelength at the upper frequency end of the signal spectrum. The PCB geometries are then of sufficient electrical extent to be effective EMI antennas. The resonant lengths of the EMI antennas may, however, be quite removed from the typical half-wavelength dipole resonances. The finite difference time-domain method can be used to numerically analyze the printed circuit board geometries, determine antenna resonances, and investigate EMI coupling paths. EMI resulting from the stacked-card configuration has been investigated experimentally and numerically to ascertain the EMI coupling path at the bus connector, and EMI antennas  相似文献   

6.
The paper considers the reverberation chamber (RC) method for the measurement of the shielding effectiveness (SE) of coaxial cables with braided shields. In particular, the voltage at the cable termination is numerically computed and compared to that measured in an RC. The RC field is represented by a finite summation of random plane waves, and a finite-difference time-domain (FDTD) code is used to calculate the outer shield current induced by the RC field. The knowledge of the shield current distribution allows the determination of the voltage at the cable termination's internal circuit after a proper numerical averaging. It is then compared to the measured voltage averaged over stirrer rotations. The method is applied to a commercially available cable model RG58, and using the nominal value for the transfer impedance of this cable type gives results in a satisfactory agreement with the measurements. Finally, the possibility of recovering the transfer impedance from the measured SE of the RC is discussed.  相似文献   

7.
Fundamental EMI source mechanisms leading to common-mode radiation from printed circuit boards with attached cables are presented in this paper. Two primary EMI source mechanisms have been identified: one associated with a differential-mode voltage and another associated with a differential-mode current, both of which result in a common-mode current on an attached cable. These mechanisms can he used to relate printed circuit layout geometries to EMI sources. The two mechanisms are demonstrated through numerical and experimental results, and an example from a production printed-circuit design is presented  相似文献   

8.
A novel time-domain finite-element boundary integral (FE-BI) solver for analyzing broadband scattering and radiation from free-standing electromagnetically large and perfect electrically conducting platforms supporting inhomogeneous and geometrically intricate structures is presented. The solver has three distinctive features that render it especially attractive for broadband analysis of installed antennas. i) The FE and BI solver components are hybridized using a single-surface interface. ii) The hybrid equations are solved by an implicit time-marching scheme accelerated by an (outer) Jacobi iterative solver that leverages (inner) direct FE and iterative BI solvers. iii) The BI solver component is accelerated by a distributed memory parallel implementation of the time-domain adaptive integral method based on the message-passing interface. The accuracy, late-time stability, and performance of the proposed time-domain FE-BI solver are demonstrated via its application to various scattering and radiation problems; moreover, the solver is used to characterize conformally mounted antennas on several platforms including an aircraft  相似文献   

9.
Common-mode currents induced on cables attached to printed circuit boards (PCBs) can be a significant source of unintentional radiated emissions. This paper develops a model for estimating the amount of common-mode cable current that can be induced by the signal voltage on microstrip trace structures or heatsinks on a PCB. The model employs static electric field solvers or closed-form expressions to estimate the effective self-capacitances of the board, trace, and/or heatsink. These capacitances are then used to determine the amplitude of an equivalent common-mode voltage source that drives the attached cables. The model shows that these voltage-driven common-mode cable currents are relatively independent of the cable parameters and the trace or heatsink location when the PCB is small relative to the cable length and to a wavelength.  相似文献   

10.
John Wong 《变频器世界》2005,(8):123-126,86
Anyone working in a systems electromagnetic compatibility environment is usually painfully aware of the fact that, often, the weakest link in the system is the cabling. Whether this is the cable or the connectors themselves, or more likely the interface between the cable and the connectors where there may be a poor connection of the cable screen, the ability of cabling to leak or absorb spurious signals is a cause of much EMC frustration. This section will address the basis of the cabling related EMI phenomenon and the best cabling practice.  相似文献   

11.
A higher order finite-difference time-domain perfectly matched layer (PML) methodology for the systematic modeling of generalized three-dimensional electromagnetic compatibility (EMC) problems, is presented in this paper. Establishing a covariant/contravariant formulation, the novel algorithm introduces a parametric topology of accurate nonstandard schemes for the nonorthogonal div-curl problem and the suppression of lattice dispersion. Also, the wider boundary stencils are treated by compact operators, while a mesh expanding process reduces the absorber's depth. At arbitrarily-aligned interfaces, consistency is preserved through a convergent concept that considers the proper continuity conditions. Hence, the enhanced PMLs attain large annihilation rates for complex domains and broadband spectrums. Numerical validation-stressing on evanescent waves near scatterers-confirms the superiority of the proposed algorithm via realistic EMC applications, like shielding enclosures, printed circuit boards, and modern antennas.  相似文献   

12.
The aim of this work is the development and validation of compact SPICE models suitable to analyze the conducted and radiated immunity of shielded cables. The reference structures are coaxial cables, and shielded cables with two parallel wires (i.e., twinax cable). The conducted and radiated immunity of the shielded cables are evaluated considering as source a known injected current on the cable shield, and the coupling with an external plane wave electromagnetic field, respectively. The circuit models are validated by comparing the results with those obtained by other approaches. The developed models are then used to quantify the main grounding practices of shielded cables.  相似文献   

13.
PrEN 50289-1-6标准中的EMC测试   总被引:1,自引:0,他引:1  
文章总结了通信电缆屏蔽效率测试中常用的和已标准化测试过程,并且探讨了今后通信电缆和连接器的电磁耦合(EMC)测试方法。  相似文献   

14.
Theory and analysis of leaky coaxial cables with periodic slots   总被引:4,自引:0,他引:4  
Frequency band and coupling loss are the two important parameters of leaky coaxial cables with periodic slots. The frequency band can be predicted by analyzing the arrangement of the slots on the outer shield of the cable, but the coupling loss is not so easy to determine by classical methods. In this paper, the finite-difference time-domain (FDTD) method is used to calculate the electric field distribution in the slot cut in the outer conductor of the coaxial cable. The dyadic Green's function is then used to calculate the radiation field of the equivalent surface magnetic current densities. By these two methods, the coupling losses of the leaky coaxial cables with different periods, sizes and shapes of the slots can be accurately obtained. Some results in this paper were verified by the experimental results of leaky coaxial cables designed for railway mobile communications with a frequency band of 100-500 MHz  相似文献   

15.
A systematic and efficient algorithm is presented for incorporating multiport lumped networks in terms of admittance matrices into a hybrid field-circuit solver based on the extended time-domain finite-element method. The Laplace-domain admittance matrices are cast into the time-domain stepping equations for port voltages and currents to form a lumped-network subsystem, which is then interfaced with the finite-element and circuit subsystems through shared ports. While the port voltages of the lumped-network subsystem are determined by the finite-element and circuit subsystems, its port currents are treated as external current excitations for the finite-element and circuit subsystems. All the lumped-network port variables are then eliminated from the final expressions to form a global system for only the finite-element and circuit unknowns. The proposed algorithm further extends the capability of the existing field-circuit solver to model more complex and mixed-scale hybrid circuits, and the algorithm is validated and demonstrated through numerical examples.   相似文献   

16.
Electric drive system with Insulated gate bipolar transistor (IGBT) power device is widely used in Electric vehicle (EV), which consists of inverter, cables and Permanent magnet synchronous motor (PMSM). Due to the fast switching in di/dt and dv/dt of IGBT device, the system produces serious radiated Electromagnetic interference (EMI) through the interconnection cables. Thus, modeling of EMI source, propagation path and load PMSM is the key to accurately evaluate the system's radiation level. In addition, the system's radiated EMI involves the integrated calculation of circuit, cable and electromagnetic field, which cannot be solved by using a single circuit or electromagnetic calculation method. Therefore, this paper develops an effective field-linecircuit coupling based method to investigate the radiated EMI problems for IGBT-PMSM drive system, which is validated by experimental measurement. Besides, the impact of power cable parameters on radiated EMI is discussed. The proposed approach has guiding significance for electromagnetic compatibility design of EV.  相似文献   

17.
A planar triangular monopole antenna for UWB communication   总被引:1,自引:0,他引:1  
A planar triangular monopole antenna (PTMA) is presented for high-frequency structure simulator ultra-wideband (UWB) communication. The high-frequency structure simulator three-dimensional electromagnetic solver is employed for design simulation. A printed PTMA has been realized by using the FR-4 printed circuit board substrate. The measured voltage standing wave ratio is less than 3 from 4 to 10 GHz. In the UWB communication frequency range, the measured phase distribution of the input impedance is quite linear and the H-plane patterns are almost omni-directional. The Kirchhoff's surface integral representation was adopted in the developed finite-difference time-domain code to compute the far field distributions from the near filed ones in time-domain. This is to investigate the radiated power density spectrum (PDS) shaping to comply with FCC emission limit mask. The effect of various source pulses (first-order Rayleigh pulses with /spl sigma/ of 20, 30, and 50 ps) on the radiated PDS shaping is also studied.  相似文献   

18.
With continually increasing operating frequencies, the analysis of electromagnetic interference (EMI)-related effects is becoming an important issue for high-speed designs. An algorithm is presented for fast analysis of radiation and incident field coupling effects in high-speed circuits. The proposed technique provides an efficient means for combining the solutions from full-wave field solvers such as the finite-difference time-domain (FDTD) method with circuit level simulators such as SPICE for calculating radiated/coupled fields in arbitrarily shaped interconnect structures. The technique speeds up the whole simulation process by employing a model-reduction-based approach, and also overcomes the numerical stability problems associated with the FDTD, in the presence of nonlinear terminations. In addition, the proposed algorithm provides a direct access to existing vast device libraries of SPICE in EMI analysis  相似文献   

19.
Analysis of linear coaxial antennas   总被引:3,自引:0,他引:3  
Two types of linear coaxial antennas, coaxial-colinear antennas, and slotted coaxial antennas are studied to check the possibility of using them as the base-station antenna in personal communication systems. The slot voltages and input impedance of linear coaxial antennas are obtained by using a transmission-line analysis where the radiation effect is accounted by a shunt and a serial admittance, respectively. The current distribution is obtained by solving an integral equation using the method of moments. The radiation pattern and directivity are then obtained from the current distribution and the reflection coefficient inside the coaxial cable. Factors analyzed include frequency, coaxial filling permittivity and segment number  相似文献   

20.
王迎节  聂磊  刘耀华 《无线电工程》2011,41(5):36-38,46
在电子设备和系统中,各种电缆是信号传输必不可少的联系纽带,同时电缆又是导致各种电磁兼容(EMC)问题的主要因素。电缆造成电磁干扰(EMI)的原因主要是因为电缆上存在着干扰电流。介绍了2种干扰电流,结合电磁兼容测试中经常出现的问题,对每种电流产生的原因进行了分析,提出了减小这些干扰电流的具体方法。通过试验验证了方法的可操作性,对产品设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号