首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-energy ball milling technique using the mechanical alloying method has been employed for fabrication of glassy Co100−xTix (25≤x≤67) alloy powders at room temperature. The fabricated glassy alloys in the Co-rich (33≥x) side exhibit good soft magnetic properties. The binary glassy alloys for which the glass transition temperatures (Tg) have rather high temperatures (above 800 K), show large supercooled liquid regions before crystallization (ΔTx larger than 50 K). The reduced glass transition temperature (ratio between Tg and liquidus temperatures, Tl (Tg/Tl)) was found to be larger than 0.56. We have also performed post-annealing experiments on the mechanically deformed Co/Ti multilayered composite powders. The results show that annealing of the powders at 710 K leads to the formation of a glassy phase (thermally enhanced glass formation reaction), of which the heat of formation was measured directly. The similarity in the crystallization and magnetization behaviors between the two classes of as-annealed and as-mechanically alloyed glassy powders implies the formation of the same glass state.  相似文献   

2.
Gd65Fe20Al15, Gd65Fe15Al20 and Gd70Fe15Al15 bulk amorphous alloys were produced by copper mold casting method with the maximum diameters of 2, 1 and 1 mm, respectively. The crystallization temperature (Tx) and melting temperature (Tm) of the Gd65Fe20Al15 bulk amorphous alloy are 808 and 943 K, respectively. Accordingly, the temperature interval of Tm and Tx, ΔTm (=Tm − Tx), is as small as 135 K and the reduced crystallization temperature (Tx/Tm) is as high as 0.86. The small ΔTm and high Tx/Tm values are presumed to be the origin for the achievement of the high amorphous-forming ability of the Gd–Fe–Al bulk amorphous alloy. The Gd65Fe20Al15, Gd65Fe15Al20 and Gd70Fe15Al15 bulk amorphous cylinders with a diameter of 1 mm exhibit superparamagnetism at room temperature, while the amorphous ribbon shows the paramagnetism at room temperature. Finally, the mechanical properties of Gd65Fe20Al15 bulk amorphous alloys are investigated.  相似文献   

3.
The glass forming ability of Gd-Co-A1 ternary alloy systems with a composition ranging from 50% to 70% (molar fraction) for Gd and from 5% to 40% (molar fraction) for AI were investigated by copper mold casting and Gd60Co25Al15 bulk glass alloy cylinders with the maximum diameter of 5 mm were obtained. The reduced glass transformation temperature (TG/Tm) and the distance of supercooling region ATx are 0.616 and 45 K, respectively for this Gd-Co-A1 alloy. The compressive fracture strength (σf) and elastic modulus (E) of Gd-Co-A1 glassy alloys are 1 170-1 380 MPa and 59-70 GPa, respectively. The Gd-AI-Co bulk glassy alloys with high glass forming ability and good mechanical properties are promising for the future development as a new type function materials.  相似文献   

4.
A bulk metallic glass (BMG) cylinder of Fe60Co8Zr10Mo5W2B15 with a diameter of 1.5 mm was prepared by copper mould casting of industrial raw materials. The amorphous state and the crystallization behavior were investigated by X-ray diffraction (XRD). The thermal stability parameters, such as glass transition temperature (Tg), crystallization temperature (Tx), supercooled liquid region (ΔTx) between Tg and Tx, and reduced glass transition temperature Trg (Tg/Tm) were measured by differential scanning calorimetry (DSC) to be 891, 950, 59 K, and 0.62, respectively. The crystallization process took place through a single stage, and involved crystallization of the phases -Fe, ZrFe2, Fe3B, MoB2, Mo2FeB2, and an unknown phase, as determined by X-ray analysis of the sample annealed for 1.5 ks at 1023 K, 50 K above the DSC peak temperature of crystallization. Mössbauer spectroscopy was studied for this alloy. The spectra exhibit a broadened and asymmetric doublet-like structure that indicated paramagnetic behavior and a fully amorphous structure. -Fe was found in the amorphous matrix for a cylinder with a diameter of 2.5 mm. The success of synthesis of the Fe-based bulk metallic glass from industrial materials is important for the future progress in research and practical application of new bulk metallic glasses.  相似文献   

5.
The crystal structure of Y3TaNi6+xAl26 (refined composition Y4TaNi6+[7]Al20+[6]) was determined by single-crystal X-ray diffraction (λ(Mo K) −0.71073 A. μ −17.827 mm1, F(000) = 700, T = 293 K, wR = 0.015 for [8] unique reflections). This new quaternary aluminide crystallizes with a cubic structure. Pearson code cP49-12.85, (221) Pm-3m-ji'gdba, a = 8.3600(1) Å. V = 584.28(2) Å, Z = 1, M1 = 1510.25, Dx = 4.292 mg mm1. The structure of YxTaNi6+xAl26 is filled-up substitution variant of the BaHg11 structure type with one additional atom site, partly occupied (around 15%) by Ni atoms, located at the centre of a cube formed by Al atoms. Distinct atom coordinates were refined for Ni and Al atoms on a site for which mixed occupation (approximately 50% Ni/50% Al) was found. The Ta atoms centre regular Al atom cuboctahedra, and the Y atoms 20-vertex polyhedra, formed by Al and Ni atoms, similar to those observed in CeMn4Al8 and YbFe2Al10.  相似文献   

6.
Employing a Tian-Calvet-type calorimeter operating in the scanning mode at temperatures from 1120 to 1220 K, the enthalpy change, ΔdH, associated with the decomposition of GaBO3 (=1/2β-Ga2O3+1/2B2O3(liq.)) and the corresponding decomposition temperature, Td, were determined: ΔdH=30.34±0.6 kJ/mol, Td=1190±5 K. Using the transposed-temperature-drop method the thermal enthalpy, H(T)−H(295 K), of GaBO3 was measured as a function of temperature, T, in the region from 760 to 1610 K; the results obtained are
[H(T)−H(295 K)]/(J/mol)=104.8·(T/K)−31 300 (760 K<T<1190 K),
[H(T)−H(295 K)]/(J/mol)=138.8·(T/K)−41 480 (1190 K<T<1590 K).
On the basis of the experimental results, the enthalpy and entropy of formation, ΔfH and ΔfS, respectively, of GaBO3 from the component oxides were derived:
ΔfH=−30.34 kJ/mol,ΔfS=−25.50 J/(K·mol) at 1190 K,
ΔfH=−10.55 kJ/mol,ΔfS=−5.48 J/(K·mol) at 298 K.
The enthalpy versus temperature curve shows, apart from a step associated with the decomposition of GaBO3, a further step at 1593 K which is attributed to a monotectic equilibrium.  相似文献   

7.
X-ray diffraction, Mössbauer spectroscopy and magnetization measurements were used to study the structure and some magnetic properties of Fe50Ge50 and Fe62Ge38 prepared by mechanical alloying from the elemental powders. In both cases in the early stages of milling the intermediate paramagnetic FeGe2 phase was formed. The mechanical alloying process of Fe50Ge50 resulted in the formation of the paramagnetic FeGe (B20) phase with an average crystallite size of about 15 nm. In the case of the Fe62Ge38, the ferromagnetic Fe5Ge3 (β) phase with a Curie temperature of about 430 K was obtained. The average crystallite size was about 9 nm. The average hyperfine magnetic field of about 16 T allowed it to determine that more than four germanium atoms exist in the nearest environment of the 57Fe isotopes in the Fe5Ge3 phase.  相似文献   

8.
采用机械合金化和热等静压技术制备纳米结构14Cr-ODS铁素体钢,利用SEM,XRD和EDS等手段分析了机械合金化过程中粉末形态和结构的变化以及合金元素的固溶情况,通过TEM研究了14Cr-ODS铁索体钢的微观结构及其在短时高温下的稳定性.结果表明,元素粉末经机械合金化过程中发生反复的冷焊和断裂导致粉末尺寸先增加(0-2 h)后下降(2-70 h),晶粒尺寸随球磨时间的增加而减小,同时Cr,W和Y2O3等固溶入Fe基体中.纳米结构14Cr-ODS钢中存在3种析出相:极高密度的、尺寸在几个纳米的富Y-Ti-O团簇,少量Y2Ti2O7析出相和块状富Cr-Ti相.经1250℃,8 h短时高温热处理后,纳米团簇显示出了良好的稳定性,Y2Ti2O7相的密度增加.  相似文献   

9.
In this investigation, MoSi2 intermetallic compound has been synthesized by reducing of MoO3/SiO2 powder mixtures by Al and carbon via mechanical alloying (MA). Powder mixtures were ball milled for 0–100 h and structural evolutions have been monitored by X-ray diffraction. In the Al system, both β-MoSi2 (high temperature phase) and -MoSi2 (low temperature phase) were obtained after 3 h of milling and after 70 h of milling the β-phase transformed to -phase. The crystallite size of -MoSi2 and Al2O3 after milling for 100 h was 12 and 17 nm, respectively. In reducing with carbon, two different compositions with nominal carbon content of 13.7 and 24 wt.% were used that in both compositions, -MoSi2 forms during 10 h of milling. Higher carbon content increases the amount of MoSi2.  相似文献   

10.
The HfFe6Ge6-type RMn6Sn6−xXx′ solid solutions (R=Tb, Dy, X′=Ga, In; x≤1.4) have been studied by powder magnetization measurements. All the series are characterized by ferrimagnetic ordering and by a decrease in Curie temperatures with the substitution (ΔTcx≈−39 K for X′=Ga and ΔTcx≈−75 K for X′=In). The RMn6Sn6−xGax systems are characterized by a strong decrease in the spin reorientation temperature with substitution (ΔTtx≈−191 K and −78 K for R=Tb and Dy, respectively) while this transition almost does not change in systems containing indium. The coercive fields drastically decrease with the substitution in the TbMn6Sn6−xGax system while the substitution of In for Sn has a weaker effect. The coercive fields of the Dy compounds do not vary greatly with the substitution in both series. The behaviour of the TbMn6Sn6−xGax is compared with the evolutions observed in the TmMn6Sn6−xGax series. This comparison strongly suggests that the replacement of Sn by Ga changes the sign of the A02 crystal field parameter.  相似文献   

11.
Polycrystalline hydrogen storage alloys based on lanthanum (La) are commercially used as negative electrode materials for the nickel–metal hydride (Ni–MHx) batteries. In this paper, mechanical alloying (MA) was used to synthesize nanocrystalline LaNi4−xMn0.75Al0.25Cox (x=0, 0.25, 0.5, 0.75 and 1.0) hydrogen storage materials. XRD analysis showed that, after 30 h milling, the starting mixture of the elements decomposed into an amorphous phase. Following the annealing in high purity argon at 700 °C for 0.5 h, XRD confirmed the formation of the CaCu5-type structures with a crystallite sizes of about 25 nm. The nanocrystalline materials were used as negative electrodes for a Ni–MHx battery. Cobalt substituting nickel in LaNi4Mn0.75Al0.25 greatly improved the discharge capacity and cycle life of the LaNi5 material. For example, in the nanocrystalline LaNi3.75Mn0.75Al0.25Co0.25 powder, discharge capacities up to 258 mA h g−1 (at 40 mA g−1 discharge current) were measured. Mechanical alloying is a suitable procedure to obtain LaNi5-type alloy powders for electrochemical energy storage.  相似文献   

12.
Nitrogenation of SmFe10Mo2 powders was performed in a self-made furnace under a high-purity N2 atmosphere up to 40 MPa at 500 °C. Upon nitrogenation at atmospheric pressure, the lattice parameters a and c increase by 0.5% and 2.7%, respectively, whereas the Curie temperature T C increases from 519 to 633 K. With further increasing the nitrogenation pressure to 20 and 40 MPa, the 1:12 main phase starts to decompose and a large amount of Mo and α-Fe precipitates. This leads to variation of Mo concentration in the 1:12 phase and causes a sharp decrease in T C and in the coercivity. The relative complex permittivity and permeability of paraffin-SmFe10Mo2 composites show multi-resonant behavior. After nitrogenation, the magnetic loss of the powders decreases, which may originate from the influence of eddy currents due to the increase in the particle size.  相似文献   

13.
The Gibbs free energy of formation of Nd3RuO7(s) has been determined using solid-state electrochemical cell employing oxide ion conducting electrolyte. The electromotive force (e.m.f.) of the following solid-state electrochemical cell has been measured, in the temperature range from 929.3 to 1228.6 K.
Cell: (−)Pt/{Nd3RuO7(s) + Nd2O3(s) + Ru(s)}//CSZ//O2(p(O2) = 21.21 kPa)/Pt(+)

The Gibbs free energy of formation of Nd3RuO7(s) from elements in their standard state, calculated by the least squares regression analysis of the data obtained in the present study, can be given by:

fG°(Nd3RuO7, s)/(kJ mol−1) ± 1.6} = −3074.3 + 0.6097(T/K); (929.3 ≤ T/K ≤ 1228.6).

The uncertainty estimate for ΔfG°(T) includes the standard deviation in e.m.f. and the uncertainty in the data taken from the literature. The intercept and the slope of the above equation correspond to the enthalpy of formation and entropy, respectively, at the average experimental temperature of Tav. = 1079 K.  相似文献   


14.
Magnetic properties and magnetocaloric effects of Pr6Co1.67Si3 compound have been investigated by magnetization measurements. The saturation moment at 5 K is found to be 10.7μB. The compound undergoes two magnetic transitions below Curie temperature TC = 48 K and shows a reversible second-order magnetic transition around TC. A magnetic entropy change ΔS = 6.9 J/(kg K) is observed for a magnetic field change from 0 to 5 T. The full width at half maximum of the ΔS peak is found to be about 38 K.  相似文献   

15.
A mixture of elemental Ni and Ta powders with an atomic ratio of 3∶7 was subjected to mechanical alloying (MA). An amorphous Ni30Ta70 alloy was formed after 80 hrs of milling, the amorphization by rapid quenching technique of which has not been reported. The atomic structural changes were observed by neutron diffraction in the amorphization process during MA. The radial distribution function RDF(r) shows that peaks of fcc-Ni and bcc-Ta crystal broaden first and gradually approach those characteristic of an amorphous phase with increasing MA time. A local atomic environment around Ni and Ta atoms was studied by analyzing the first peak in the total pair distribution function g(r) after the completion of amorphization. We reach our conclusion from this analysis that the amorphization in the Ni30Ta70 alloy takes place by the penetration of smaller Ni atoms into the bcc-Ta lattice.  相似文献   

16.
Polycrystalline bulk samples of double layered manganite system La1.2(Sr1−xCax)1.8Mn2O7 (0.0 ≤ x ≤ 0.4) were prepared by sol–gel method. After characterizing the samples using XRD and SEM, their electrical, magnetic and elastic properties were investigated. The lattice parameters and cell volume show a monotonous decrease with increase of Ca content, whereas the grain size is found to increase with increasing Ca content. The value of TIM is found to decrease with Ca content up to x = 0.3 and then a slight increase of TIM is observed. The low temperature upturn of resistivity is attributed to the spin-glass-like behavior, which is also evidenced by the irreversibility observed between ZFC and FC magnetizations. The conduction mechanism above TIM can be explained by Mott VRH model. The present magnetization and ultrasonic studies indicate that the system shows a secondary transition at T*, which decreases with increasing Ca content. Further, the T* seems to be intrinsic to the present double layered manganite system.  相似文献   

17.
P. Jia  H. Guo  Y. Li  J. Xu  E. Ma 《Scripta materialia》2006,54(12):2165-2168
We have discovered a new Cu-based bulk metallic glass (BMG). Although of a simple Cu49Hf42Al9 ternary composition, the as-cast alloy is a monolithic, uniform BMG with a critical diameter as large as 10 mm. The width of the supercooled liquid region ΔTx and the reduced glass transition temperature Trg for this glass are 85 K and 0.62, respectively. In addition to its high glass-forming ability and high density of 11 g/cc, this BMG exhibits high ductility with a compressive plastic strain of 11–13%, making it a good candidate for applications as well as for studies of deformation behavior of Cu-based BMGs.  相似文献   

18.
《Acta Materialia》2003,51(15):4519-4532
The high-energy ball milling technique was employed for synthesizing a single phase of glassy Zr65Al7.5Ni10Cu12.5Pd5 alloy powder, using a room-temperature mechanical alloying method. Whereas the glass transition temperature of the obtained glassy alloy is 683 K, the crystallization temperature is 783 K. The mechanically alloyed Zr65Al7.5Ni10Cu12.5Pd5 glassy powders maintain their unique disordered structure through a large supercooled liquid region (100 K). The possibility of devitrification of the synthetic glassy phase upon increasing the ball milling time was investigated. The results have shown that the glassy powder that is obtained after 173 ks of milling is subjected to numerous lattice imperfections and tends to transform into a metastable big-cube phase after further ball milling (259–432 ks). After 540 ks of milling, a complete glassy–metastable phase transformation is achieved and the end-product of this stage of milling is nanocrystalline big-cube powder that has a lattice constant of 1.2293 nm. As the milling time increases (720 ks), the obtained big-cube phase can no longer withstand the shear and impact stresses that are generated by the milling media and is transformed into a new metastable phase of nanocrystalline fcc-Zr65Al7.5Ni10Cu12.5Pd5. The fcc-metastable phase transforms into a mixture of Zr2Cu and Zr6NiAl2 crystalline phases at rather high temperature, as high as 993 K.  相似文献   

19.
It is shown that oxygen-stabilized compounds Zr3NiOx (x=0.4, 0.6, 0.8, 1.0) interact with hydrogen at ambient temperature and pressure forming saturated hydrides with a filled Re3B-type structure. The hydrogen storage capacity decreases with increasing oxygen content from 6.65 H/f.u. for Zr3NiO0.4 down to 5.58 H/f.u. for Zr3NiO1.0. A slight decrease of the crystal lattice parameters of the parent compounds and a substantial increase of these parameters for the saturated hydrides were observed with increasing oxygen content. The partial hydrogen-induced lattice expansion, ΔV/at. H, increases from 2.333 Å3 for Zr3NiO0.4H6.65 to 3.047 Å3 for Zr3NiO1.0H5.58. Joint Rietveld refinement using X-ray and neutron powder diffraction data showed a distribution of deuterium atoms on similar positions as in oxygen-free Zr3FeDx and Zr3CoDx. The oxygen atoms move during deuteration from the octahedral site to one trigonal bi-pyramidal and two tetragonal interstices that are fully occupied in the saturated deuterides jointly by deuterium and oxygen. After deuterium desorption the oxygen atoms fully return to the initial octahedral site.  相似文献   

20.
The n-type Co-doped β-FeSi2 (Fe0.98Co0.02Si2) with dispersion of several oxides, such as ZrO2 or several rare-earth oxides (Y2O3, Nd2O3, Sm2O3 and Gd2O3), was synthesized by mechanical alloying and subsequent hot pressing. The effects of these oxide dispersions on the thermoelectric properties of Fe0.98Co0.02Si2 were investigated. ZrO2 was decomposed in the β phase, and the ZrSi and -FeSi phases, which are metallic phases, were formed in the samples with ZrO2 addition. The Seebeck coefficient and the electrical resistivity were significantly decreased with increasing amount of ZrO2, indicating that a part of the Zr atoms was substituted for Fe atoms in the β phase. In the case of the samples with rare-earth oxide addition, a decomposition of a large amount of these added oxides did not occur. However, the rare-earth oxide addition caused a slight increase in the amount of the phase. The Seebeck coefficient was significantly enhanced by the rare-earth oxide addition especially in the low temperature range. These facts indicated that a small amount of rare-earth oxides was decomposed in the β phase, and rare-earth elements were substituted for Fe atoms as a p-type dopant, resulting in the decrease in the carrier concentration. The rare-earth oxide addition was also effective in reducing the thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号