首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对生活用水、工业用水细菌含量不达标问题,本文以羟乙基纤维素(HEC)、纳米银溶液为原料,聚乙烯吡咯烷酮(PVP)为保护剂制备了一种基于羟乙基纤维素的复合气凝胶抗菌过滤材料(HEC-PVP)。研究了HEC-PVP复合气凝胶的抗菌性能,探讨了HEC-PVP复合气凝胶的制备工艺,同时分析了较优工艺条件下制备的HEC-PVP复合气凝胶的力学性能、水中结构稳定性、抗菌性能等。  相似文献   

2.
张琳  李群  刘蓉蓉  潘丽 《中国造纸》2019,38(7):36-41
使用漂白硫酸盐针叶木浆为原料,以经高碘酸钠氧化后制备出的二醛纤维素为基材负载纳米银颗粒,后经高压均质法得到载银量为24.78%的纳米银/纳米二醛纤维素气凝胶。探讨高碘酸钠氧化反应时间对构成漂白硫酸盐针叶木浆的纤维素大分子以及针叶木纤维的影响。通过傅里叶变换红外光谱仪、X射线衍射仪、紫外可见分光光度计、扫描电子显微镜、透射电子显微镜和比表面积和孔径分析仪对样品进行表征。结果表明,随着氧化时间的增加,纤维素的醛基含量持续上升,当反应4 h时增至330 μmol/g,纤维的聚合度由1447大幅下降至525,同时零距抗张强度和长度也呈现下降趋势。制备出的载银气凝胶上负载的纳米银颗粒为球形,气凝胶的比表面积为35.40 m~2/g,平均孔径为19.62 nm。  相似文献   

3.
针对废旧纯棉织物再利用率较低的问题,以废旧纯棉织物为原料制备纳米纤维素气凝胶,并分别采用甲基三甲氧基硅烷(MTMS)和三甲基氯硅烷(TMCS)为改性剂对气凝胶进行疏水改性。采用扫描电子显微镜、红外光谱仪、热重分析仪、表面接触角测试仪以及导热系数测试仪研究了疏水改性剂种类和添加量对气凝胶结构和性能的影响。结果显示,采用MTMS为改性剂制备的疏水纳米纤维素气凝胶的结构和性能优于TMCS。综合考虑MTMS添加量对气凝胶结构、疏水性、热稳定性和保温隔热性的影响,得出MTMS与CNF的最佳质量比为2∶1,此时疏水气凝胶的结构比较平整均匀,疏水性、热稳定性分别增加了1.22倍和1.43倍,导热系数降低了12.3%。  相似文献   

4.
纤维素基功能材料的产业化是传统造纸行业转型升级的重要发展方向。纳米纤维素基气凝胶是一种基于纳米纤维素制备而成的轻质固体材料,具有孔隙率高、比表面积大、低密度和可生物降解等优点,在吸附分离领域有广泛的应用。本文对纳米纤维素基气凝胶的制备方法进行了总结,探讨了制备过程对纳米纤维素基气凝胶结构的影响,综述了纳米纤维素基气凝胶在吸附分离领域中的应用进展,并展望了其应用前景。  相似文献   

5.
纤维素作为天然高分子材料一直受到研究人员的广泛关注。其中,纤维素气凝胶凭借其可生物降解性、多孔性等特点,在阻燃隔热等领域展现出应用潜力。本文介绍了纤维素气凝胶的特点及制备方法,并对不同阻燃纤维素气凝胶的阻燃原理、优缺点和研究现状进行了详细综述。最后对阻燃纤维素气凝胶现有难点和发展前景进行了展望,提升阻燃效果和探索绿色、经济、可连续的生产方法是今后阻燃纤维素气凝胶重要的研究方向。  相似文献   

6.
本研究以纤维素纳米纤丝(CNF)为碳骨架,氮含量高的类石墨相氮化碳(g-C3N4)为氮源和造孔剂,成功制备了一种具有分级多孔结构的氮掺杂碳气凝胶(NCA)电催化剂。研究了NCA的物理化学结构与氧还原反应(ORR)活性之间的关系,以及其锌-空气电池性能。该NCA催化剂表现出较高的比表面积(381.77 m~2/g)、分级多孔结构,氮掺杂含量3.27%。ORR测试结果表明,NCA具有优异的ORR催化活性,半波电位可达0.83 V,接近商业铂碳(Pt/C)电催化剂。进一步将NCA作为阴极催化剂用于组装水系锌-空气电池,在电流密度为10 mA/cm~2下可以实现长达110 h的循环充放电,具有良好的电池使用性能。  相似文献   

7.
8.
高帅  刘姗 《中国造纸》2023,42(6):18-24
本研究以废纸作为纤维素源(CEL)、聚苯胺(PANI)为导电性物质,基于原位聚合法原理制备了一种PANI气凝胶复合材料,最终获得了轻质(密度<0.05 g/cm3)、抗电磁干扰的气凝胶。通过傅里叶变换红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、热重分析仪(TG)和矢量网络分析仪对气凝胶复合材料的组成、形貌、热稳定性和电磁参数进行表征,并研究了苯胺单体用量对复合材料电磁屏蔽等性能的影响。结果表明,随着苯胺单体用量的增加,气凝胶复合材料的热稳定性提高。当苯胺单体用量为30%时,气凝胶复合材料的热稳定性高;频率在8.2 GHz时,气凝胶复合材料屏蔽效能(SE)达9.5 dB以上。  相似文献   

9.
为研究硅烷偶联剂含量对纳米纤维素气凝胶性能的影响,选用氨丙基三乙氧基硅烷(KH-550)和甲基三甲氧基硅烷(MTMS)2种硅烷偶联剂对纳米纤维素(CNF)气凝胶进行修饰。通过扫描电子显微镜、热重分析仪、万能强力机和热常数分析仪进行测试与表征。结果表明:硅烷偶联剂的添加使改性气凝胶红外光谱图上出现了含硅峰值,但并未改变气凝胶的组分;改性后气凝胶的孔洞明显增多;MTMS与CNF的质量比为1∶2时,改性气凝胶的压缩回弹性最好(7.25 kPa);MTMS的添加使改性气凝胶具有良好的疏水性,接触角为156°;随着KH-550的添加,气凝胶导热系数先降低后升高;随着MTMS的添加,气凝胶导热系数逐渐降低。  相似文献   

10.
以纤维素纳米纤丝(CNF)作为原料,以凹凸棒(ATP)作为增强材料,通过制备不同质量比的纳米纤维素-凹凸棒(CNF-ATP)悬浮液;然后利用液氮梯度冷冻和冷冻干燥的方法制备了CNF-ATP复合气凝胶。采用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、热重分析(TG)等手段对制备所得气凝胶样品进行分析,探究了不同ATP的添加量对CNF-ATP气凝胶结构的影响。结果表明,CNF-ATP的前驱体悬浮液Zeta电位为-31.20 mV,粒径分布主要在1000 nm以上。随着ATP添加量的提高,CNF-ATP复合气凝胶的湿、热稳定性及抗应变能力也显著提升,热分解温度超过了305 ℃,在溶液中浸渍72 h仍能保持湿稳定性。同时,研究发现当CNF和ATP质量比为2∶1时,CNF-ATP复合气凝胶的抗应变能力和柔韧平衡性最佳,形变承受程度可高达45%。该比例下CNF-ATP复合气凝胶的湿、热稳定性也得到了极大程度的提升,ATP在气凝胶孔壁上的分布状况表现了其分散性良好。  相似文献   

11.
针对脂环酸芽孢杆菌对果汁工业的巨大威胁,该研究制备了一种抗菌材料,即溶菌酶接枝的带有聚多巴胺涂层的纤维素磁球,对该磁球进行了结构表征和抗菌试验。结果表明:FT-IR、XPS和EDS谱图结果证实了聚多巴胺和溶菌酶成功修饰在磁球表面;XRD结果显示纤维素的晶形结构由纤维素I转化为纤维素II,γ-Fe2O3使溶菌酶接枝的纤维素磁球LCs的II型晶体特征峰强度较纯纤维素球CB明显降低;热重分析结果表明再生纤维素磁球RC与LC-2、LC-3的最大降解速率温度依次为346、349和343℃,对应的最大降解速率绝对值依次为1.84、1.44和1.16,表明聚多巴胺涂层提升了纤维素磁球的热稳定性;VSM结果显示RC、LC-1和LC-3的饱和磁化强度分别为5.68、5.54和5.38emu/g,磁球具备超顺磁特性;抗菌试验表明磁球能够抑制脂环酸芽孢杆菌的生长,LC-3的抑制效果最好。综上所述,该磁球具有抗菌性能优良,热稳定性高且磁响应性灵敏、便于回收等特点,该研究结果为纤维素磁球在果汁领域的实际应用提供理论依据。  相似文献   

12.
Functional composite films were successfully prepared from cellulose, graphite (GP), and polyaniline (PANI) using a combination of physical and chemical processes. Cellulose was dissolved in N-methylmorpholine-N-oxide monohydrate (NMMO) and regenerated in water to form the matrix. GP was dispersed in the NMMO solvent prior to the dissolution of the cellulose, and PANI was deposited on the surfaces of the cellulose/GP films by in situ chemical polymerization. The structures of the PANI/cellusose/GP composite films were investigated using X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and SEM/energy-dispersive X-ray spectroscopy. The mechanical strengths, thermal stabilities, conductivities, and antibacterial activities of the films were studied in detail. The results showed that GP formed a multilayered structure in the cellulose matrix and that the PANI nanoparticles were tightly wrapped on the film surface. The film thickness increased from 40 m to 100 m after the addition of GP and PANI. The tensile strength of the composite films was 80~107 MPa, with the elongation at break being 3%~10%. The final residual weight of the composite films was as high as 65%, and the conductivity of the composite films reached 14.36 S/m. The cellulose matrix ensured that the films were flexible and exhibited desirable mechanical properties, while the GP filler significantly improved the thermal stability of the films. The PANI coating acted as a protective layer during burning and provided good electrical conductivity and antibacterial activity against Escherichia coli; both of these characteristics were slightly enhanced by the incorporation of GP. These PANI/cellulose/GP composite films should be suitable for use in electronics, antistatic packing, and numerous other applications.  相似文献   

13.
本研究以柠檬香精为芯材,壳聚糖(CS)、明胶(GE)和纤维素纳米晶体(CNC)为复合壁材,采用复凝聚法制备柠檬香精微胶囊。研究了壁材质量分数、CNC质量分数、芯壁比和乳化速率对微胶囊粒径和包埋率的影响,确定了最佳制备工艺条件为:壁材质量分数0.2%,CNC质量分数0.3%,芯壁比3:1,乳化速率900 r/min。在此最佳条件下制得的香精微胶囊包埋率为74.35%。傅里叶变换红外光谱(FT-IR)表明,CS、GE与CNC之间发生了静电吸引。扫描电子显微镜(SEM)表明,香精微胶囊呈球形,粒径在1.8~5.2μm之间,分散性良好。热重分析表明,CS/GE/CNC壁材体系能很好地保护柠檬香精在200℃以下的缓慢释放。  相似文献   

14.
该实验选用大肠杆菌和李斯特菌为G-、G+菌的代表菌,探究月桂酰精氨酸乙酯(LAE)对其以细菌细胞膜为作用靶点的抑菌机理,通过测定细菌的抑菌曲线、中和内毒素的活性、细菌表面特性、构建脂质体模拟LAE与磷脂双分子层的相互作用、离子的泄漏和LAE对G-菌外膜及细胞质膜的渗透性等探究其抑菌机理。实验结果表明,LAE对G-、G+菌均有明显的杀菌活性,最小抑菌浓度均为8 μg/mL,LAE结合脂多糖对内毒素的中和率可高达96.56%,降低细胞表面Zeta电位,增强细菌表面疏水性,且对G-菌的影响更大。LAE能引起脂质体包裹的荧光素钙黄绿素的泄漏,并呈浓度依赖性,但LAE并不能使脂质体膜完全破裂。LAE能够增加G-菌外膜渗透性,使大肠杆菌对抗生素探针利福平和红霉素更敏感,同时对细胞质膜产生较大扰动,使内容物从胞内渗出,从而抑制细菌的生长。该研究结果表明LAE主要以改变细胞壁膜渗透性,导致胞内物质的泄漏,而达到抑菌作用。  相似文献   

15.
采用浸渍法使Zn~(2+)进入纸基纤维内,然后通过一步水热法合成出负载有不同形貌的纳米氧化锌(ZnO)抗菌纸,在保证抗菌性能的同时实现其固定化,避免二次污染。探究了不同制备工艺条件对纳米ZnO抗菌纸的形貌、抗菌性能和物理性能的影响,并采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)对产物的结构和形貌进行表征。结果表明,抗菌纸上负载的ZnO纳米颗粒均为结晶良好的六方纤锌矿结构,不同制备条件生成的纳米颗粒结构差异巨大,有棒状、针状、米粒状等;以抑菌率为主要指标,通过正交实验得出的最佳制备工艺为:浸渍温度70℃、浸渍时间2 min、ZnCl_2溶液质量分数45%、NaOH溶液pH值12;在此条件下制备的纳米ZnO抗菌纸对大肠杆菌的抑菌率达到76. 9%。  相似文献   

16.
将聚N-异丙基丙烯酰胺、Fe3O4纳米颗粒和染料4-甲胺基-9-烯丙基-1,8-萘酰亚胺与乙基纤维素溶液共混,利用高压静电喷雾技术一步法制得兼具温敏性、磁性和荧光性的乙基纤维素复合微球。结果表明,制备的乙基纤维素复合微球平均粒径在亚微米级,Fe3O4纳米颗粒的添加提高了复合微球的骨架强度和改善了微球形貌。当温度超过聚N-异丙基丙烯酰胺的低临界溶解温度时,乙基纤维素复合微球的平均粒径减小,表现出温敏性;基于微球的温敏响应,乙基纤维素复合微球表现出与染料溶液相反的温致荧光增强性能。振动样品磁强计分析结果表明,乙基纤维素复合微球具有良好的超顺磁性。  相似文献   

17.
离子液中蔗渣纤维素的硫酸酯化及抑菌效果研究   总被引:3,自引:3,他引:0  
从蔗渣中分离出蔗渣纤维素(BC),以离子液[BMIM]C1为反应介质对BC进行均相硫酸酯化得到蔗渣纤维素硫酸酯(BCS),采用13CNMR光谱对产物BCS进行结构表征,通过体外抑菌试验考察BCS的抗菌活性.结果表明,BCS结构中硫酸酯取代基分布随反应时间的变化而不同,硫酸酯化取代首先发生在C6位,然后在C2位、C3位;BCS对大肠杆菌和金黄色葡萄球菌均有一定的抑制作用,抑菌圈直径随BCS浓度的升高而增大.  相似文献   

18.
研究37℃条件下不同浓度纳米和非纳米氧化镁对单核细胞增生李斯特菌的抑制作用,以及低温(4和-18℃)对纳米氧化镁抑菌作用的影响,并通过扫描电子显微镜(SEM)观察了37℃条件下纳米氧化镁处理前后单核细胞增生李斯特菌细胞形态的变化。结果表明,37℃条件下,纳米氧化镁对单核细胞增生李斯特菌的生长具有明显的抑制作用,且抑菌效果随着纳米氧化镁浓度的增加而增大。在中性缓冲溶液中纳米氧化镁仍具有抑菌效果,但同浓度的非纳米氧化镁以及与纳米氧化镁同pH的碱性条件对单核细胞增生李斯特菌均无显著的抑制作用,因而推测纳米氧化镁的纳米材料特性是其抑菌的主要因素。在低温条件下,对照组单核细胞增生李斯特菌在4℃条件下能缓慢生长,-18℃条件下呈现下降趋势,添加纳米氧化镁后单核细胞增生李斯特菌的生长均受到显著抑制。37℃条件下的扫描电镜结果显示,1.5 mg/m L纳米氧化镁处理后单核细胞增生李斯特菌的菌体有所变长。  相似文献   

19.
Two-dimensional(2 D) graphene oxide(GO) nanosheets and 1 D2,2,6,6-tetramethylpiperidin-1-oxyl(TEMPO)-oxidized cellulose nanofibers(TOCN) were assembled into GO/TOCN aerogels via a low temperature hydrothermal and freeze-drying process. The as-prepared GO/TOCN aerogels exhibited interconnected 3 D network microstructures, a low density of 6.8 mg/cm~3, a high porosity up to 99.2% and excellent mechanical flexibility.The high porosity in conjunction with their hydrophobicity(contact angle of 121.5°), allowed the aerogels to absorb different organic liquids with absorption capacities up to 240 times of their own weight, depending on the density of the liquids. These results indicated that the aerogels were excellent candidates as sorbent materials for the clean-up of organic liquids. After five absorption-desorption cycles, the absorption capacity of the TOCN carbon aerogels could be regenerated up to 97% of the initial absorption capability,which demonstrated their excellent recyclability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号