首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper presents an integrated robust fault estimation and fault‐tolerant control technique for stochastic systems subjected to Brownian parameter perturbations. The augmented system approach, unknown input observer method, and optimization technique are integrated to achieve robust simultaneous estimates of the system states and the means of faults concerned. Meanwhile, a robust fault‐tolerant control strategy is developed by using actuator and sensor signal compensation techniques. Stochastic linear time‐invariant systems, stochastic systems with Lipschitz nonlinear constraint, and stochastic systems with quadratic inner‐bounded nonlinear constraint are respectively investigated, and the corresponding fault‐tolerant control algorithms are addressed. Finally, the effectiveness of the proposed fault‐tolerant control techniques is demonstrated via the drivetrain system of a 4.8 MW benchmark wind turbine, a 3‐tank system, and a numerical nonlinear model.  相似文献   

3.
In this paper, we investigate the fault‐tolerant formation control of a group of quadrotor aircrafts with a leader. Continuous fault‐tolerant formation control protocol is constructed by using adaptive updating mechanism and boundary layer theory to compensate actuator fault. Results show that the desired formation pattern and trajectory under actuator fault can be achieved using the proposed fault‐tolerant formation control. A simulation is conducted to illustrate the effectiveness of the method.  相似文献   

4.
This paper proposes an integrated fault estimation and fault‐tolerant control (FTC) design for Lipschitz non‐linear systems subject to uncertainty, disturbance, and actuator/sensor faults. A non‐linear unknown input observer without rank requirement is developed to estimate the system state and fault simultaneously, and based on these estimates an adaptive sliding mode FTC system is constructed. The observer and controller gains are obtained together via H optimization with a single‐step linear matrix inequality (LMI) formulation so as to achieve overall optimal FTC system design. A single‐link manipulator example is given to illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a supervisory adaptive fault‐tolerant control scheme is proposed for a class of uncertain nonlinear systems with multiple inputs. The multiple inputs are the outputs of an actuator group that may act either on one control surface or on multiple control surfaces and may fail during operation. With some actuator groups as backups, the supervisory adaptive control includes 2 modes: the adaptive compensation mode and the switching mode. The former is used to compensate for the failure of an actuator group as long as at least one actuator of the group works normally, and the latter, to switch the controller from a failed group to a healthy one when the failure is detected by one of the monitoring functions that are constructed to supervise some variables related to system stability. It is shown that with the proposed scheme, all signals of the closed‐loop system are bounded, and prescribed transient and steady state performance of the tracking error can be guaranteed. An aircraft example is used to demonstrate the application of the proposed scheme.  相似文献   

6.
In this paper, a new strategy for fault‐tolerant control system design has been proposed using multiple controllers. The design of such controllers is shown to be unique in the sense that the resulting control system neither suffers from the problem of conservativeness of conventional passive fault‐tolerant control nor from the risk of instability associated with active fault‐tolerant control in case that an incorrect fault detection and isolation decision is made. In other words, the stability of the closed‐loop system is always ensured regardless of the decision made by the fault detection and isolation scheme. A correct decision will further lead to optimal performance of the closed‐loop system. This paper deals with the conflicting requirements among stability, redundancy, and graceful degradation in performance for fault‐tolerant control systems by using robust control techniques. A detailed design procedure has been presented with consideration of parameter uncertainties. Both total and partial actuator failures have been considered. This new control strategy has been demonstrated by controlling a McDonnell F‐4C airplane in the lateral‐direction through simulation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the active fault tolerant cooperative control problem for a team of wheeled mobile robots whose actuators are subjected to partial or severe faults during the team mission. The cooperative robots network only requires the interaction between local neighbors over the undirected graph and does not assume the existence of leaders in the network. We assume that the communication exists all the time during the mission. To avoid the system''s deterioration in the event of a fault, a set of extended Kalman filters (EKFs) are employed to monitor the actuators'' behavior for each robot. Then, based on the online information given by the EKFs, a reconfigurable sliding mode control is proposed to take an appropriate action to accommodate that fault. In this research study, two types of faults are considered. The first type is a partial actuator fault in which the faulty actuator responds to a partial of its control input, but still has the capability to continue the mission when the control law is reconfigured. In addition, the controllers of the remaining healthy robots are reconfigured simultaneously to move within the same capability of the faulty one. The second type is a severe actuator fault in which the faulty actuator is subjected to a large loss of its control input, and that lead the exclusion of that faulty robot from the team formation. Consequently, the remaining healthy robots update their reference trajectories and form a new formation shape to achieve the rest of the team mission.  相似文献   

8.
针对直升机的执行器故障,本文提出了一种基于双时标模型的自适应容错控制方法.根据直升机的不同状态变量响应时间不同的特点和时标分离理论,将直升机模型划分为快速(姿态动力学)和慢速(平移动力学)两种时标模型.反步控制方法和逆动力学控制方法分别被用于进行快慢两种模型控制器的设计,并在控制过程中采用了不同的控制周期.在双时标模型中,引入了执行器效率因子(actuator effectiveness factors,AEFs)用于表示执行器的健康情况.利用无色卡尔曼滤波(unscented Kalman filter,UKF)对AEFs进行了在线估计,估计结果用于快速和慢速模型控制器的自适应重构.仿真结果表明,该自适应容错控制方法,能够有效的消除执行器故障(包括常值和时变故障)对直升机飞行性能的影响,并取得良好的控制效果.  相似文献   

9.
An adaptive sliding mode observer (SMO)–based fault‐tolerant control method taking into consideration of actuator saturation is proposed for a hypersonic scramjet vehicle (HSV) under a class of time‐varying actuator faults. The SMO is designed to robustly estimate the HSV states and reconstruct the fault signals. The adaptive technique is integrated into the SMO to approximate the unknown bounds of system uncertainties, actuator faults, and estimation errors. The robust SMO synthesis condition, which can be formulated as a set of linear matrix inequalities, is improved by relaxing structure constraints to the Lyapunov matrix. An anti‐windup feedback control law, which utilizes the estimated HSV states and the fault signals, is designed to counteract the negative effects of actuator saturation induced by actuator faults. Simulation results demonstrate that the proposed approach can guarantee stability and maintain performance of the closed‐loop system in the presence of HSV actuator faults and saturation.  相似文献   

10.
This paper investigates the fault‐tolerant control (FTC) problem for a class of hybrid nonlinear impulsive systems. Two kinds of faults are considered: continuous faults that affect each mode and discrete faults that affect the impulsive switching. The FTC strategy is based on the trade‐off between the frequency of switching and the decreasing rate of Lyapunov functions along the solution of the system, which maintains the stability of overall hybrid impulsive systems in spite of these two kinds of faults. A switched reluctance motor example is taken to illustrate the applicability of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a retrofit fault‐tolerant tracking control (FTTC) design method with application to an unmanned quadrotor helicopter (UQH). The proposed retrofit fault‐tolerant tracking controller is developed to accommodate loss‐of‐effectiveness faults in the actuators of UQH. First, a state feedback tracking controller acting as the normal controller is designed to guarantee the stability and satisfactory performance of UQH in the absence of actuator faults, while actuator dynamics of UQH are also considered in the controller design. Then, a retrofit control mechanism with integration of an adaptive fault estimator and an adaptive fault compensator is devised against the adverse effects of actuator faults. Next, the proposed retrofit FTTC strategy, which is synthesized by the normal controller and an additional reconfigurable fault compensating mechanism, takes over the control of the faulty UQH to asymptotically stabilize the closed‐loop system with an acceptable performance degradation in the presence of actuator faults. Finally, both numerical simulations and practical experiments are conducted in order to demonstrate the effectiveness of the proposed FTTC methodology on the asymptotic convergence of tracking error for several combinations of loss‐of‐effectiveness faults in actuators.  相似文献   

12.
The article proposes several fault‐tolerant control (FTC) laws for singularly perturbed systems (SPS) with actuator faults and disturbances. One of the main challenges in this context is that the fast‐slow decomposition is not available for actuator faults and disturbances. In view of this, some conditions for the asymptotic stability of the closed‐loop dynamics are investigated by amending the composite Lyapunov approach. On top of this, a closed‐form expression of the upper bound of singular perturbation parameter (SPP) is provided. Moreover, we design several SPP‐independent composite FTC laws, which can be applied when this parameter is unknown. Finally, the chattering phenomenon is eliminated by using the continuous approximation technique. We also emphasize that, for linear SPSs, the FTC design can be formulated as a set of linear matrix inequalities, while the SPP upper bound can be obtained by solving a convex optimization problem. Two numerical examples are given to illustrate the effectiveness of the proposed methodology.  相似文献   

13.
Mean time to failure (MTTF) is an important reliability index of fault‐tolerant control systems, which is chosen as a design objective in this paper. However, it is usually evaluated from stochastic reliability models, and no analytical expression is available to relate MTTF to controller parameters. To overcome this difficulty, a two‐stage design scheme is proposed in this paper: A gradient‐based search is firstly carried out on probabilistic H performance characteristics for MTTF requirement; a sequential randomized algorithm with a weighted violation function is then developed for a controller design to satisfy the required H performance, and its convergence is guaranteed with probability 1. Two iterative algorithms are carried out alternately to implement this scheme, and a controller can be designed for MTTF requirement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
本文主要研究了四旋翼无人机在外部干扰、执行器存在部分失效和偏置故障并发情况下有限时间轨迹跟踪的控制问题. 通过分析四旋翼无人机动力学特性, 构建了带有外部干扰、执行器机构故障的动力学模型. 基于鲁棒全局快速终端滑模控制算法, 设计了一种有限时间容错控制器, 提高了系统对故障的响应速度. 其次, 针对常值/时变故障和干扰,在控制器设计中采用改进的连续函数进行补偿, 减少了由切换函数引起的系统抖振, 并基于Lyapunov函数对控制器的稳定性进行了分析. 最后, 通过仿真实验验证了所设计控制器的有效性和可靠性, 同时存在执行器故障和外部干扰的情况下, 无人机能够实现较好的轨迹跟踪性能.  相似文献   

15.
The attitude fault‐tolerant control problem for a satellite with reaction‐wheel failures, uncertainties, and unknown external disturbances is investigated in this paper. Firstly, an iterative learning observer (ILO) is proposed to achieve fault detection, isolation, and estimation. Secondly, based on the ILO, a third‐order sliding mode controller is proposed to stabilize the satellite attitude rapidly under unknown external disturbances and reaction‐wheel faults. Thirdly, the asymptotically stability of the ILO and the third‐order sliding mode controller is proved by using the Lyapunov stability theory. Finally, simulation results demonstrate that the proposed control scheme is more effective and feasible by comparing with other fault‐tolerant control approach.  相似文献   

16.
A robust fault‐tolerant control scheme is proposed for uncertain nonlinear systems with zero dynamics, affected by actuator faults and lock‐in‐place and float failures. The proposed controller utilizes an adaptive second‐order sliding mode strategy integrated with the backstepping procedure, retaining the benefits of both the methodologies. A Lyapunov stability analysis has been conducted, which unfolds the advantages offered by the proposed methodology in the presence of inherent modeling errors and strong eventualities of faults and failures. Two modified adaptive laws have been formulated, to approximate the bounds of uncertainties due to modeling and to estimate the fault‐induced parametric uncertainties. The proposed scheme ensures robustness towards linearly parameterized mismatched uncertainties, in addition to parametric and nonparametric matched perturbations. The proposed controller has been shown to yield an improved post‐fault transient performance without any additional expense in the control energy spent. The proposed scheme is applied to the pitch control problem of a nonlinear longitudinal model of Boeing 747‐100/200 aircraft. Simulation results support theoretical propositions and confirm that the proposed controller produces superior post‐fault transient performance compared with already existing approaches designed for similar applications. Besides, the asymptotic stability of the overall controlled system is also established in the event of such faults and failures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
ABSTRACT

An observer-based robust adaptive Fault Tolerant Control approach is proposed in this paper to tackle the problem of trajectory tracking for a quadrotor unmanned aerial vehicle (UAV) suffering simultaneous actuator faults, exogenous disturbances and actuator saturation limits. An adaptive fuzzy state observer is proposed to estimate the immeasurable states by using fuzzy logic systems to approximate the unknown nonlinear functions of the uncertain system model. Based on the estimates of the fuzzy observer, an Integral Terminal Sliding Mode Controller that guarantees finite time convergence of the states to a small neighbourhood of zero, even under impaired conditions, is developed. Stability analysis was carried over using the Lyapunov method. The proposed approach was implemented to a quadrotor UAV and its performance was assessed under nominal conditions, and by subjecting the quadrotor to disturbances, simultaneously occurring actuator faults and input saturation limits. Excellent tracking performance and robustness even under worst-case scenarios are among the positive features of the proposed approach.  相似文献   

18.
This paper develops two distributed finite‐time fault‐tolerant control algorithms for attitude synchronization of multiple spacecraft with a dynamic virtual leader in the presence of modeling uncertainties, external disturbances, and actuator faults. The leader gives commands only to a subset of the followers, and the communication flow between followers is directed. By employing a novel distributed nonsingular fast terminal sliding mode and adaptive mechanism, a distributed finite‐time fault‐tolerant control law is proposed to guarantee all the follower spacecraft that finite‐time track a dynamic virtual leader. Then utilizing three distributed finite‐time sliding mode estimators, an estimator‐based distributed finite‐time fault‐tolerant control law is proposed using only the followers' estimates of the virtual leader. Both of them do not require online identification of the actuator faults and provide robustness, finite‐time convergence, fault‐tolerant, disturbance rejection, and high control precision. Finally, numerical simulations are presented to evaluate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The paper considers a network of agents with multiple‐integrator internal dynamics, which share partial information on their states according to an arbitrary topology. For this system, two control problems are addressed and solved. The first consists in assigning the dominant closed‐loop poles. The second consists in achieving a specified consensus with arbitrary dominant dynamics. In both cases, the regulator is required to be decentralized, and the controlled network has to result tolerant with respect to faults in the communication apparatuses of the agents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The purpose of fault diagnosis of stochastic distribution control systems is to use the measured input and the system output probability density function to obtain the fault estimation information. A fault diagnosis and sliding mode fault‐tolerant control algorithms are proposed for non‐Gaussian uncertain stochastic distribution control systems with probability density function approximation error. The unknown input caused by model uncertainty can be considered as an exogenous disturbance, and the augmented observation error dynamic system is constructed using the thought of unknown input observer. Stability analysis is performed for the observation error dynamic system, and the H performance is guaranteed. Based on the information of fault estimation and the desired output probability density function, the sliding mode fault‐tolerant controller is designed to make the post‐fault output probability density function still track the desired distribution. This method avoids the difficulties of design of fault diagnosis observer caused by the uncertain input, and fault diagnosis and fault‐tolerant control are integrated. Two different illustrated examples are given to demonstrate the effectiveness of the proposed algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号