首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of concern to regulators and fire safety engineers is how flexible polyurethane foam drips and flows during burning. Specifically, flexible polyurethane foam forms a burning ‘pool’ of liquid as the foam decomposes, which can lead to accelerated flashover events. To fully study this phenomenon where the ‘pool fire’ accelerates heat release, large‐scale tests like the furniture calorimeter (American Society of Testing and Materials (ASTM) E1537) are used, and no small‐scale technique exists. In this paper, we present our work in developing a new sample holder that works with a bench‐scale heat release test, the cone calorimeter (ASTM E1354). The holder was built upon designs developed by the National Institute of Standards and Technology, which placed the foam in a cage in a vertical orientation during cone calorimeter testing. In this paper, we show the schematics for this test apparatus, as well as results obtained with this apparatus on four different flexible foams (shape memory and high‐density foam, flame retarded and non‐flame retarded). We compare the results from the vertical testing with that obtained via traditional horizontal ASTM E1354 testing. The advantages and disadvantages of this new apparatus are discussed in this paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Virgin polyurethane flexible foams are widely assumed to be highly flammable materials. The flammability of three model polyurethane flexible foams suggests that this may not be universally true. Two of them show unexpectedly low flammability in the limiting oxygen index test and pass flammability tests such as FMVSS 302 and FAR 25.853. Cone calorimetric measurements at 25 kW/m2 and 50 kW/m2 furthermore show a high resistance against ignition and demonstrate the self‐extinguishing properties of these two virgin, flame‐retardant‐free, polyurethane flexible foams.  相似文献   

3.
The effectiveness and the failure mechanism of fire barriers in a residential upholstered furniture (RUF) were investigated by full-scale flaming tests on upholstered chair mock-ups. Six commercial fire barriers were tested in this study. Fire barriers were screened for the presence of elements that are typically used in fire retardants and the presence of commonly used fire retardants. For each fire barrier, triplicate flammability tests were run on chair mock-ups, where polyurethane foam and polyester fiber fill were used as the padding materials, and each chair component was fully wrapped with the fire barrier of choice and a polypropylene cover fabric. The ignition source was an 18 kW square propane burner, impinging on the top surface of the seat cushion for 80 seconds. Results showed all six fire barriers reduced the peak heat release rate (as much as ≈64%) and delayed its occurrence (up to ≈19 minutes) as compared to the control chair mock-ups. The heat release rate remained at a relatively low plateau level until liquid products (generated by either melting or pyrolysis of the padding material) percolated through the fire barrier at the bottom of the seat cushion and ignited, while the fire barrier was presumably intact. The flaming liquid products dripped and quickly formed a pool fire under the chair, and the peak heat release rate occurred shortly thereafter. Ultimately, the ignition of the percolating liquid products at the bottom of the seat cushion was identified as the mechanism triggering the failure of the fire barrier.  相似文献   

4.
Fires that involve upholstered furniture frequently begin as a smoldering combustion and, with time, transition to a flaming combustion, which sharply increases the level of hazard. Therefore, understanding how the compositions of the primary flammable components of the furniture, ie, flexible foam and upholstery fabric, affect this transition is important for fire safety considerations. In the current study, an experiment was designed to observe this transition using a sample consisting of 30 × 15 × 6 cm3 rectangular foam block covered with 30 × 15 cm2 piece of fabric. For a representative system of 1.8 lb/ft3 (29 kg/m3) flexible polyurethane foam and 11 oz (0.37 kg/m2) cotton fabric, 0.69 transition probability was measured. This probability decreased by a factor of 4 when a small amount of phosphorus‐based flame retardant, Fyrol® HF‐9, was added to the foam. The transition to flaming was speculated to be associated with the formation of adjacent pyrolysis and smoldering regions within the foam. The pyrolysis region, dominated by anaerobic decomposition, provided gaseous fuel, the ignition of which resulted in the transition. The smoldering region, dominated by oxidation reactions at the solid‐gas interface, generated the heat necessary to maintain the pyrolysis process and ignite the gaseous fuel.  相似文献   

5.
This study presents the results from a set of 11 large‐scale open fire tests performed on flexible polyurethane foam slabs/mattresses. The purpose of the study was to investigate the influence of the ignition location on the fire behaviour of the foam slabs and to generate data on a highly characterised material that could be used for modelling work in the future. A method for obtaining spatially resolved flame spread data for this type of material was presented using a gridded array of 5 × 10 thermocouples placed on the underside the foam slab and from this, flame spread was examined using three different approaches. The heat release rate (HRR) results showed clear shapes forming that were dependent on the ignition location, with two distinct behaviours being observed between the various different ignition locations, this was also observed in the calculated flame spread rate (FSR) data. Results within an individual test, showed the calculated range of FSRs over the geometry of the slab varied between approximately 1 and 8 mm/s depending on the ignition location. The average FSR values between tests varied between 3 and 7 mm/s and the maximum and minimum values were calculated to be approximately 11 and 2 mm/s respectively.  相似文献   

6.
周亮 《中国塑料》2012,(5):7-16
综述了近年来聚氨酯硬质泡沫塑料/可膨胀石墨复合材料的阻燃研究进展,详细介绍了该泡沫复合材料的制备方法、热解性能以及燃烧性能(包括极限氧指数、水平/垂直燃烧速率、热释放速率、CO/CO2生成量比值、成炭性)。分析了泡沫密度、可膨胀石墨含量及粒径、微囊包覆处理以及与其他阻燃剂复配使用对相应泡沫复合材料热稳定性及阻燃性能的影响,并对相关机理进行了深入的探讨。  相似文献   

7.
The piloted transition from smoldering to flaming, though a significant fire safety concern, has not been previously extensively studied. Experimental results are presented on the piloted transition from smoldering to flaming in non‐fire retarded (NFR) polyurethane foam and the fire retarded polyurethane foam Pyrell®. The samples are small blocks, vertically placed in the wall of an upward wind tunnel. The free surface is exposed to an oxidizer flow and a radiant heat flux. The smolder product gases pass upwards through a pilot. The experiments on NFR foam show that the smolder velocity and peak smolder temperature, which increase with the oxygen concentration and heat flux, are strongly correlated to the transition to flaming event, in that there are minimum values of these parameters for transition to occur. The existence of a minimum smolder velocity for ignition supports the concept of a gaseous mixture reaching a lean flammability limit as the criterion for the transition to flaming. To compensate for the solid‐ and gas‐phase effects of the fire retardants on the piloted transition in Pyrell, it was necessary to increase the oxygen concentration and the power supplied to the smolder igniter and the pilot. The piloted transition is observed in oxygen concentrations above 17% in NFR foam and above 23% in Pyrell. The results show that although Pyrell is less flammable than NFR foam, it is still susceptible to smoldering and the piloted transition to flaming in oxygen‐enriched environments, which is of interest for special applications such as future space missions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A combination of intumescent components was evaluated as a novel flame retardant system in a flexible polyurethane foam, and the incorporation of these components gave rise to a significant enhancement of the flame retardant properties of the foam. The heat release rate was lowered at an early stage as well as throughout the fire, the total heat production was decreased and the time to ignition was prolonged. Mechanical measurements of the foam revealed enhanced properties in terms of stiffness accompanied by a large decrease in elongation at break as compared with a reference foam. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
蜜氨基聚脲多元醇对聚氨酯泡沫性能的影响   总被引:5,自引:0,他引:5  
以自制蜜氨基聚脲多元醇为主要原料制备高回弹聚氨酯软泡,研究蜜氨基聚脲多元醇对泡沫的开孔率、密度、回弹率、压陷硬度、水平燃烧速率和氧指数等方面的影响。三聚氰胺聚脲多元醇为其泡沫提供了优良的泡沫压陷硬度和阻燃性。玻璃化温度和热解温度测试值表明蜜氨基聚脲多元醇为其泡沫提供了优异的热稳定性。  相似文献   

10.
This review provides insight into the ignition, combustion, smoke, toxicity, and fire‐retardant performance of flexible and rigid polyurethane foams. This review also covers various additive and reactive fire‐retardant approaches adopted to render polyurethane foams fire‐retardant. Literature sources are mostly technical publications, patents, and books published since 1961. It has been found by different workers that polyurethane foams are easily ignitable and highly flammable, support combustion, and burn quite rapidly. They are therefore required to be fire‐retardant for different applications. Polyurethane foams during combustion produce a large quantity of vision‐obscuring smoke. The toxicity of the combustion products is much higher than that of many other manmade polymers because of the high concentrations of hydrogen cyanide and carbon monoxide. Polyurethane foams have been rendered fire‐retardant by the incorporation of phosphorus‐containing compounds, halogen‐containing compounds, nitrogen‐containing additives, silicone‐containing products, and miscellaneous organic and inorganic additives. Some heat‐resistant groups such as carbodiimide‐, isocyanurate‐, and nitrogen‐containing heterocycles formed with polyurethane foams also render urethane foams fire‐retardant. Fire‐retardant additives reduce the flammability, smoke level, and toxicity of polyurethane foams with some degradation in other characteristics. It can be concluded that despite many significant attempts, no commercial solution to the fire retardancy of polyurethane foams without some loss of physical and mechanical properties is available. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
聚氨酯泡沫塑料在低密度炸药制备中的应用   总被引:1,自引:0,他引:1  
以软质聚氨酯泡沫塑料为载体,制备低密度炸药。探讨了聚氨酯泡沫塑料在低密度炸药中的应用。简单介绍了采用炸药溶液浸渍法、水分散液浸泡法和原料混合发泡法这三种方法的工艺过程以及产品的爆炸性能。  相似文献   

12.
聚氨酯软质泡沫的制备及其泡孔结构和吸油性能的研究   总被引:3,自引:0,他引:3  
采用全水发泡工艺,通过对配方的调节,研制了一种具有一定耐压强度和较好吸油性能的聚氨酯软质泡沫塑料。研究了催化剂配比及用量、泡沫稳定剂用量、粗MDI指数对聚氨酯软质泡沫吸油性能的影响。采用聚醚(N-220),当催化剂辛酸亚锡的质量份为0.20、催化剂A33的质量份为0.55、泡沫稳定剂有机硅油的质量份为1.0、粗MDI指数0.85左右、发泡剂去离子水的质量份为4~8时,所制备的聚氨酯泡沫泡孔结构和吸油效果较好。  相似文献   

13.
研究阻燃剂分子量对聚氨酯软泡中阻燃剂迁移行为的影响.试验结果表明:1)在常温、反复压缩变形下.聚氨酯软泡中各分子量的阻燃剂基本无迁移;2)在烘烤条件下,阻燃剂分子量越大,阻燃剂迁移速度越小;在烘烤温度恒定时,烘烤时间和阻燃剂残余量之问都存在幂函数关系且相关性好,幂函数的系数和幂指数与阻燃剂的分子量大小有关,随着阻燃剂分子量的增大,软质聚氨酯泡沫塑料内部阻燃剂向表面迁移逐渐困难;3)在烘烤、反复压缩变形的综合因素影响下,各分子量的阻燃剂迁移情况与条件2类似.说明温度对阻燃剂迁移的影响至关重要.  相似文献   

14.
于宝刚 《中国塑料》2010,24(3):55-59
在50 kW/m2辐射功率下,利用锥形量热仪研究了氢氧化铝、卤系阻燃剂、氮系阻燃剂和磷系阻燃剂阻燃聚氨酯泡沫(PUF)的阻燃特性,获得了点燃时间、最大热释放速率、总热释放、比消光面积及质量损失速度等参数。结果表明,将热释放速率、燃烧总释放热和烟气释放量作为材料阻燃性能好坏的评价指标,阻燃剂聚磷酸铵(APP)和三聚氰胺磷酸盐(MP)是PUF的理想阻燃剂。  相似文献   

15.
This study aims to develop a complete methodology for assessing flammability hazards of typical fuels (ie, transformer oil, hydraulic oil, gear oil, and lubricating grease) used in a wind turbine nacelle by combining different experimental techniques such as thermogravimetric analysis and cone calorimetry. Pyrolysis properties (onset temperature, temperature of maximum mass loss rate, and mass residue) and reaction‐to‐fire properties (ignition time, heat release rate, mass loss rate, and smoke release rate) were determined and used for a preliminary assessment of thermal stability and flammability hazards. Additional indices, for ignition and thermal behavior (effective heat of combustion, average smoke yield, and smoke point height, heat release capacity, fire hazard parameter, and smoke parameter, were calculated to provide a more advanced assessment of the hazards in a wind turbine. Results show that pyrolysis of transformer oil, lubricating grease, hydraulic oil, and gear oil occur in the range of 150°C to 550°C. Lubricating grease and transformer oil show the higher and lower thermal stabilities with maximum pyrolysis rate temperatures of 471°C and 282°C, respectively. The measured relation between ignition time and radiant heat flux agrees well with Janssens method (a power of 0.55). The aforementioned indices appear to provide a reasonable prediction of performance under real fire conditions according to a full‐scale fire test documented by Declercq and Van Schevensteen. The results of the study indicate that transformer oil is the easiest to ignite while lubricating grease is the most difficult to ignite but also has the highest smoke production rate; that transformer oil has the highest heat release rate while gear oil has the lowest; and that the fire hazard parameter is the highest for transformer oil and the smoke parameter is the highest for lubricating grease. The potential of this type of work to design safer wind turbines under performance‐based approaches is clearly clarified.  相似文献   

16.
The first part of this study focuses on the effect of cone calorimeter test variables on polyurethane flexible foam properties such as ignitability, heat release rate, effective heat of combustion and mass loss. Three of the main commercial foam types were used, i.e. conventional slabstock foams, high-resilience slabstock foams and all-MDI (methylene diphenyldiisocyanate) moulded foams. A decrease in heat flux (down to 40%) with increasing distance from the conical heater was measured. As a consequence, results were found to depend to a large extent on the thickness and the melting behaviour of the foam samples. To achieve a sufficiently constant and uniform heat flux exposure, sample thickness had to be limited to 25 mm. In addition, repeatability was found to be good under various conditions, with percentage standard deviations for effective heat of combustion, peak rate of heat release and mass loss below 10%. Levels of radiant flux above 25 kW m?2 were found to be very severe to test flexible polyurethane foams. Under such conditions, foams that show large differences in combustion performance in small-scale flammability tests performed almost identically in the cone calorimeter. In the second part of this study the effects of foam variables, such as foam type, density and melamine content, are defined. These effects were clearly pronounced at radiant flux levels of 15–25 kWm?2. Density was found to be the key variable in controlling ignition resistance. In addition, high-resilience slabstock foams and all-MDI moulded foams performed better than conventional slabstock foams of the same density. Melamine addition resulted in a delay of ignition for all three foam types and an incomplete combustion, decreased heat release and effective heat of combustion in HR-slabstock and all MDI moulded foams. However, melamine is not effective as a heat sink in conventional slabstock foams. The different performance of the foam types under study can be explained by a different melting behaviour.  相似文献   

17.
A series of experiments designed to characterize fire behavior on flat 1.2 m × 1.2 m samples of commercial non‐fire‐retarded flexible polyurethane foam were performed. Time‐resolved heat release and mass loss rates were measured. Experimental parameters varied, including foam thickness (5.1 and 10.2 cm) and burning angle (+25°, +12.5°, 0°, ?12.5°, and ?25°). Polyurethane foam is typically produced by reacting a multifunctional isocyanate with a polyol. The foam used here was formed by reacting toluene diisocyanate and a polyol based on a condensed polyether of polypropylene oxide. Earlier cone calorimeter studies of this foam had revealed a clear two stage pyrolysis behavior in which the heated foam first released a gaseous fuel derived from the isocyanate component, while leaving behind a liquid produced primarily from the polyol, which only gasified and burned following additional heating. The subsequent burning behavior of the polyol‐derived liquid is shown in this work to play a crucial role in the maximum heat release rate and total heat released by the fires spreading across the foam slabs. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

18.
Five commodity thermoplastics (polyethylene, polypropylene, thermoplastic polyurethane, poly(butylene terephthalate), and poly(amide 6)) were melt compounded with vapor grown carbon nanofibers via twin screw extrusion. These materials were then analyzed for flammability behavior by cone calorimeter to determine how the nanofibers would reduce flammability of the polymers. It was found by cone calorimeter that the nanofibers greatly reduced peak heat release rate and improved many other flammability parameters of the samples. However, smoke release was increased in all samples, which may be one drawback of using these materials. Interestingly, the amount of flammability reduction was not uniform across all samples, with nanofiber reducing flammability the most in the thermoplastic polyurethane sample. The mechanism of flammability reduction in the polymers tested in this paper is shown again to be a mass loss rate reduction induced by the formation of thick tangled networks of carbon nanofibers during polymer decomposition. This mechanism was confirmed by studying the mass loss rate curves and electron microscopy analysis of the final chars collected from the cone calorimeter experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
利用自行搭建的小尺寸实验平台,开展了对不同点火位置的乳胶泡沫材料燃烧过程的对比实验,通过对火蔓延过程中的部分重要参数(如最大火焰高度、火蔓延速度和蔓延过程中样品表面温度变化等)的测定,分析了点火位置不同时,乳胶泡沫材料的火蔓延特性。结果表明:边缘点火和中间点火条件下,最大火焰高度分别为397和491 mm,火蔓延速度分别为1.8和0.97 mm·s-1;边缘点火时的乳胶泡沫材料表面火蔓延过程中的温度低于中间点火情况下。  相似文献   

20.
阻燃型硬质聚氨酯泡沫塑料研究进展   总被引:2,自引:0,他引:2  
对硬质聚氨酯泡沫塑料燃烧机制、阻燃剂的阻燃原理以及硬泡常用阻燃剂进行了全面综述,并总结了阻燃硬质泡沫塑料待研究解决的相关技术问题,提出了相应的研究思路,最后阐述了硬质泡沫塑料阻燃发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号