首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
提出了一种应用于时间数字转换器的2倍增益自校准时间放大器。该时间放大器能动态调整支路电容的充放电时间,有效提高了增益稳定性。基于65 nm CMOS工艺进行设计,电源电压为1 V。仿真结果表明,在不同温度和工艺角下,动态输入范围可达600 ps,增益误差小于10%。在6级级联的条件下,最小精度为0.46 ps,归一化差分误差为0.15 LSB,归一化绝对误差为0.19 LSB。与传统时间放大器相比,该时间放大器的性能明显改善。  相似文献   

2.
该文提出一种通用的时间数字转换器(TDC)码密度校准信号产生方法,该方法基于相干采样理论,通过合理设置TDC主时钟和校准信号之间的频率差,结合输出信号保持电路,产生校准用的随机信号,在码密度校准过程中,随机信号均匀分布在TDC的延时路径上,实现对TDC的bin-by-bin校准。基于Xilinx公司的28 nm工艺的Kintex-7 现场可编程门阵列(FPGA)内部的进位链实现一种plain TDC,利用该方法校准plain TDC的码宽(抽头延迟时间),研究校准了2抽头方式下的TDC的性能参数,时间分辨率(对应TDC的最低有效位,Least Significant Bit, LSB)为24.9 ps,微分非线性为(–0.84~3.1)LSB,积分非线性为(–5.0~2.2)LSB。文中所述的校准方法采用时钟逻辑资源实现,多次测试考核结果表明,单个延时单元的标准差优于0.5 ps。该校准方法采用时钟逻辑资源代替组合逻辑资源,重复性、稳定性较好,实现了对plain TDC的高精度自动校准。该方法同样适用于其他类型的TDC的码密度校准。  相似文献   

3.
针对传统时间数字转换器(TDC)中普遍存在的转换速度与转换精确度相互制约问题,提出一种适用于流水线型TDC结构的新型边沿对准时间放大器。这种时间放大器采用三级门控延时链与边沿合成器的级联结构,可实现增益为4的整数倍时间放大。在0.35 μm标准CMOS工艺下完成整体流水线型TDC的设计,仿真结果显示,输入动态范围为6.11 ns,时间分辨力为13.1 ps,转换速率为50 MSamples/s。相比于传统基于脉冲序列时间放大器的TDC,转换速率提高19.5%,精确度提高33.7%。  相似文献   

4.
提出了一种基于Xilinx Virtex-5 FPGA的时钟相移采样(SCS)时间数字转换器(TDC)。利用Virtex5内部的时钟管理模块(CMT)产生16路固定相移的时钟信号,经过16路D触发器对输入信号同时进行采样量化。与传统的基于抽头延迟链结构相比,所用资源更少,性能更加稳定。仿真结果表明,该TDC的精度高于64 ps,占用数字时钟管理(DCM)与锁相环(PLL)资源小于20%,积分非线性(INL)和微分非线性(DNL)都小于0.3 LSB。  相似文献   

5.
设计了一种用于解调GFSK信号的时间数字转换器(Time Digital Converter,TDC),该时间数字转换器主要由延时链、D触发器、延时校准电路等组成.TDC对中频信号进行采样,将信息从频率信号转换到二进制码.延时校准电路保证延时单元的延时准确.TDC采用TSMC 0.18μm CMOS工艺实现,版图面积为0.08mm2.仿真结果表明,TDC的最大微分非线性为0.07LSB,最大积分非线性为-0.17LSB,功耗0.9mW,最大抗频率失调范围为±350kHz.  相似文献   

6.
王巍  董永孟  李捷  熊拼搏  周浩  杨正琳  王冠宇  袁军  周玉涛 《微电子学》2015,45(6):698-701, 705
采用Xilinx Virtex-5 FPGA芯片,实现了一种高精度、多通道时间数字转换器的设计。每个通道配有一条抽头延迟线,每条延迟线由64个快速超前进位链(CARRY4)组成。布线后,延迟线成链状结构紧密排列,有效消除了布线路径带来的误差,降低了积分非线性和微分非线性误差。仿真结果表明,设计的时间数字转换器的最低有效位约为26.35 ps,有效精度约为14 ps,INL小于4.3 LSB,DNL在-0.8 LSB~2.4 LSB范围内。  相似文献   

7.
在由FPGA超前进位单元级联构成的抽头延时链中,非线性通常较差,是TDC测量系统需要解决的重要问题之一。为了解决该问题,文章在已有的抽头采样序列(“SCSC”)基础上,提出了“混合”抽头采样序列的方法,显著改善了延时单元的非均匀性。所搭建的TDC包含了抽头延时链、采样逻辑电路、编码逻辑电路、码密度校准等模块,并在Xilinx Kintex-7系列芯片上进行验证。测试结果表明,提出的方法相较于“SCSC”序列下的微分非线性降低了32.0%,积分非线性降低了22.8%。通过进一步校准,所实现的TDC分辨率(LSB)为13.51 ps,测量精度为19.17 ps,微分非线性为[-0.45, 0.96] LSB,积分非线性在[-3.27, 1.33] LSB之间。  相似文献   

8.
设计了一种基于维纳延迟环的时间数字转换器(TDC)。该TDC基于TSMC 0.18 μm CMOS工艺进行设计,实现了高分辨率和高线性度。采用一种新型环形传播延迟结构来代替时钟信号,相比传统结构,减少了1组粗-精2级插值器的使用。粗计数器由该新型环形传播延迟结构和6位计数器构成,实现了输入的START信号与周期信号同步,测量动态范围达到208 ns。粗-精2级插值器中,第1级由粗插值器和同步器构成,第2级是一个基于单阶维纳环的精插值器。利用维纳环的循环滑动测量技术,有效提高了TDC的转换线性度。仿真结果表明,该TDC的分辨精度可达10 ps,微分非线性低于20 ps,积分非线性低于30 ps。  相似文献   

9.
锁相环作为片内高速时钟的提供者,在现代电路中至关重要。提出了一种全数字锁相环的设计方案,输出频率为250 MHz,锁定时间为2 μs,峰峰抖动为76 ps,与传统锁相环相比,具有面积小、功耗低、可移植性好、抗干扰能力强等优点。时间数字转换器(TDC)是全数字锁相环的重要组成部分,采用线性增强算法后,与现有TDC相比,具有动态范围大、分辨率高等特点,且大大减小了积分非线性。  相似文献   

10.
王巍  周浩  熊拼搏  李双巧  杨皓  杨正琳  袁军 《微电子学》2016,46(6):777-780, 787
提出了一种基于Xilinx Virtex-5 FPGA的时间数字转换器。利用Virtex-5中专用进位链CARRY4构造的延迟链,对时钟周期进行内插以得到更高精度的测量。此外,运用布局布线约束来减少延迟链的不一致性,降低了微分非线性(DNL)以及积分非线性(INL)。仿真结果表明,最低有效位(LSB)为52.22 ps,精度(RMS)约为25 ps,INL为0~0.9 LSB,DNL为-0.03~0.1 LSB。  相似文献   

11.
This paper presents the design of a coarse-fine time-to-digital converter (TDC) that amplifies a time residue to improve time resolution, similar to a coarse-fine analog-to-digital converter (ADC). A new digital circuit has been developed to amplify the time residue with a higher gain (>16) and larger range (>80 ps) than existing solutions do. However, adapting the conventional coarse-fine architecture from ADCs is not an appropriate solution for TDCs: input time cannot be stored, and the gain of a time amplifier (TA) cannot be controlled precisely. This paper proposes a new coarse-fine TDC architecture by using an array of time amplifiers and two identical fine TDCs that compensate for the variation of the TA gain during the conversion process. The measured DNL and INL are plusmn0.8 LSB and plusmn3 LSB, respectively, with a value of 1.25 ps per 1 LSB, while the standard deviation of output code for constant inputs remains below 1 LSB across the TDC range. Although the nonlinearity is larger than 1 LSB, using an INL lookup table or better matched delays in the coarse TDC delay chain will improve the linearity further.  相似文献   

12.
An integrated CMOS subnanosecond time-to-digital converter (TDC) has been developed and evaluated for positron emission tomography (PET) front-end applications. The TDC architecture combines an accurate digital counter and an analog time interpolation circuit to make the time interval measurement. The dynamic range of the TDC is programmable and can be easily extended without any timing resolution degradation. The converter was designed to operate over a reference clock frequency range of 62.5 MHz up to 100 MHz and can have a bin size as small as 312.5 ps LSB with 100-ns conversion times. Measurements indicate the TDC achieves a DNL of under /spl plusmn/0.20 LSB and INL less than /spl plusmn/0.30 LSB with an rms timing resolution of 0.312 LSB (97.5 ps), very close to the theoretical limit of 0.289 LSB (90 ps). The design is believed to be the first fully integrated CMOS subnanosecond TDC used in PET medical imaging and the first realization of a CMOS TDC that achieves an rms timing resolution below 100 ps within a 100-ns conversion time.  相似文献   

13.
通过对传统的全数字多相位时钟产生电路进行分析和总结,提出一种新颖的延时校准算法。该算法通过优化调整延时单元的顺序,大大改善了全数字多相位时钟产生电路的非线性。整个电路基于全数字延迟锁相环,采用0.13μm CMOS工艺实现,并成功用于时间数字转换器中。输入时钟频率范围在110 MHz到140 MH间,对应的输出相位差为446 ps到568 ps,积分非线性小于0.35 LSB,微分非线性小于0.33 LSB。  相似文献   

14.
In this paper, we propose a low‐power all‐digital phase‐ locked loop (ADPLL) with a wide input range and a high resolution time‐to‐digital converter (TDC). The resolution of the proposed TDC is improved by using a phase‐interpolator and the time amplifier. The phase noise of the proposed ADPLL is improved by using a fine resolution digitally controlled oscillator (DCO) with an active inductor. In order to control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. The die area of the ADPLL is 0.8 mm2 using 0.13 µm CMOS technology. The frequency resolution of the TDC is 1 ps. The DCO tuning range is 58% at 2.4 GHz and the effective DCO frequency resolution is 0.14 kHz. The phase noise of the ADPLL output at 2.4 GHz is ‐120.5 dBc/Hz with a 1 MHz offset. The total power consumption of the ADPLL is 12 mW from a 1.2 V supply voltage.  相似文献   

15.
江晨  黄煜梅  洪志良 《半导体学报》2013,34(3):035004-5
A gated ring oscillator(GRO) based time-to-digital converter(TDC) is presented.To enhance the resolution of the TDC,a multi-path structure for the GRO is used to achieve a higher oscillation frequency and an input stage is also presented to equivalently amplify the input time difference with a gain of 2.The GRO based TDC circuit is fabricated in TSMC 65 nm CMOS technology and the core area is about 0.02 mm~2.According to the measurement results,the effective resolution of this circuit is better than 4.22 ps under a 50 MHz clock frequency. With a 1 ns input range,the maximum clock frequency of this circuit is larger than 200 MHz.Under a 1 V power supply,with a 200-800 ps input time difference,the measured power consumption is 1.24 to 1.72 mW at 50 MHz clock frequency and 1.73 to 2.20 mW at 200 MHz clock frequency.  相似文献   

16.
Ahigh resolution and fast conversion rate time-to-digital converter (TDC) design based on time amplifier (TA) is proposed. The pulse-train TA employs a two-step scheme. The input time interval is first amplified by a N-times TA and the effective time is extracted in pulse-train using a time-register. Then the resulted interval is further amplified by the other pulse-train amplifier to obtain the final result. The two-step TA can thus achieve large gain that is critical for high resolution TDC. Simulation results in 1.2 V, 65 nm technology showed that for a 10 bit TDC, a resolution of 0.8 ps and a conversion rate of 150 MS/s are achieved while consuming 2.1 mW power consumption.  相似文献   

17.
An 11-bit time-to-digital converter (TDC) with high time resolution implemented in CMOS VLSI is presented. The TDC operates with a wide and clock-adjustable resolution of LSB = 50 ps to 1 ns, and with good power supply, temperature, and environmental effects compensation. The dead time of the measurement is as low as 0.5 /spl mu/s and the event rate can be as high as 1 MEvents/s. The power dissipation is a function of event rate and clock frequency; the TDC dissipates <10 mW at an event rate of 100 kEvents/s and LSB=100 ps. The TDC was incorporated in a complete time-of-flight (TOF) system on a chip that in addition included front-end analog signal processing. The TOF chip is already flying onboard the HENA (High Energy Neutral Atoms) instrument of the IMAGE NASA mission, launched in 2000, and is part of many other instruments such as particles, X-ray, and the laser altimeter of the Messenger spacecraft.  相似文献   

18.
This paper describes a CMOS time-to-digital converter (TDC) integrated circuit utilizing tapped delay lines. A technique that allows the achievement of high resolution with low dead-time is presented, The technique is based on a Vernier delay line (VDL) used in conjunction with an asynchronous read-out circuitry. A delay-locked loop (DLL) is used to stabilize the resolution against process variations and ambient conditions. A test circuit fabricated in a standard 0.7-μm digital CMOS process is presented. The TDC contains 128 delay stages and achieves 30-ps resolution, stabilized by the DLL, with the accuracy exceeding ±1 LSB. Test results show that even higher resolutions can be achieved using the VDL method, and resolutions down to 5 ps are demonstrated to be obtainable  相似文献   

19.
Time-to-digital converters (TDCs) are promising building blocks for the digitalization of mixed-signal functionality in ultra-deep-submicron CMOS technologies. A short survey on state-of-the-art TDCs is given. A high-resolution TDC with low latency and low dead-time is proposed, where a coarse time quantization derived from a differential inverter delay-line is locally interpolated with passive voltage dividers. This high-resolution TDC is monotonic by construction which makes the concept very robust against process variations. The feasibility is demonstrated by a 90 nm demonstrator which uses a 4x interpolation and provides a time domain resolution of 4.7 ps. An integral nonlinearity of 1.2 LSB and a differential nonlinearity of 0.6 LSB are achieved. The resolution restrictions imposed by an uncertainty of the stop signal and local variations are derived theoretically.  相似文献   

20.
介绍了一种用于数模转换器的电流 电压转换电路。在数模转换器的负载电阻片内集成的情况下 ,利用文中提出的电流 电压转换电路 ,数模转换器实现了要求的宽摆幅电平输出 (全“0”输入时 ,输出低电平 - 3V ;全“1”输入时 ,输出高电平 3 5V)。整个数模转换器电路用 1 2 μm双层金属双层多晶硅n阱CMOS工艺实现。其积分非线性误差为 0 4 5个最低有效位 (LSB) ,微分非线性误差为 0 2LSB ,满摆幅输出的建立时间小于 1μs。该数模转换器使用± 5V电源 ,功耗约为 30mW ,电路芯片面积为 0 4 2mm2 。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号