首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
本文选取河南省15个具有代表性的气象站点,根据其1998—2019年的逐月气象观测资料和TRMM 3B43V7逐月卫星降水数据,运用多种统计指标评估TRMM 3B43V7卫星降水产品在河南省的适用性;采用卫星降水数据代替地面降水资料计算标准化帕尔默干旱指数(SPDI),并寻求最优时间尺度;结合历史干旱事件记载,评估SPDI指数在河南省干旱监测中的适用性。结果表明:TRMM3B43V7卫星降水数据与实测地面降水数据相比,精确度很高(Bias=-0.05)、相关性很强(CC>0.88);由TRMM卫星降水数据计算得到的SPDI指数用于评估河南省历史干旱表现良好,且12个月时间尺度的SPDI指数(SPDI12)适用性最好。鉴于以上结论,可以考虑基于TRMM卫星降水产品和SPDI12指数构建河南省的干旱监测业务化系统。  相似文献   

2.
选取1951—2010年西江干、支流上5个典型水文站的实测日径流资料,基于标准化径流干旱指数(SRDI)研究了西江流域水文干旱的时空变化特征。结果表明:11951—2010年西江流域的水文干旱主要发生在1950 s、1960 s和2000 s,1950 s冬季、1960 s春季、1980 s夏季和2000 s秋季是干旱频发的时期;2西江年最大干旱日数在同一站点连续出现的时间不超过5年。流域内轻旱的发生范围有扩大趋势,而极旱则相反,多向区域发展。3西江流域的水文干旱具有区域性,4条支流同期的干旱发生水平差异较大,过去60年间只1963年、1989年、1991年、2009年和2010年4条支流同时发生了水文干旱。  相似文献   

3.
为了解西南地区气象干旱向水文干旱传播的特征,采用西南地区1968—2017年101个气象站观测资料和8个水文站月径流资料,计算了标准化降雨蒸散发指数(SPEI)和标椎化径流指数(SRI),基于皮尔逊相关系数(PCC)确定了干旱响应时间并结合游程理论识别、融合和剔除干旱事件,构建了线性干旱传播模型并确定了西南地区部分流域气象干旱向水文干旱传播的触发阈值。结果表明:西南地区干旱响应时间为2~7月;水文干旱敏感度分布与气象干旱传播率分布较为一致;干旱烈度传播阈值较小的流域,水文干旱事件历时更长。  相似文献   

4.
巴音河流域水文干旱对气象干旱的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
通过巴音河流域1961—2019年逐月降水量和径流量数据计算标准化降水指数和标准化径流指数,进而对巴音河流域气象和水文干旱的演变以及突变进行分析,并探析流域水文干旱对气象干旱的响应。结果表明,1961—2019年巴音河流域气象干旱与水文干旱呈减缓态势,流域降水增多,有变湿趋势,气象干旱湿润化表现尤为显著。巴音河流域水文干旱对气象干旱的响应表现出时滞性,在1、3、6、12个月的时间尺度下,12个月的气象干旱指标与水文干旱指标相关性最强,水文干旱滞后于气象干旱1~2个月;水文干旱对气象干旱的季节性响应在春、夏、秋、冬分别滞后5、6、9、8个月,在春夏的滞后时间短于秋冬的滞后时间。  相似文献   

5.
关中地区气象水文综合干旱指数及干旱时空特征   总被引:1,自引:0,他引:1  
根据陕西关中地区22个气象站和3个水文站1961—2016年的气象水文资料,计算了不同时间尺度的标准化降水蒸散发指数(SPEI)与径流干旱指数(SDI),运用Gumbel Copula函数构建了气象水文综合干旱指数(MHDI),探讨了MHDI的适用性,并分析了气象水文综合干旱时空分布特征。结果表明:MHDI综合了SPEI与SDI的优点,可同时表征月尺度和年尺度的气象干旱与水文干旱;关中地区MHDI序列值有明显的下降趋势,干旱情况逐年加剧;MDHI序列存在变异,年尺度变异点集中于1986年和1990年;年尺度的序列值主周期多集中在20~22 a;泾河流域干旱发生频率最低,为19.11%,北洛河流域干旱发生频率最高,为47.97%,渭河流域干旱发生频率介于两者之间,为26.42%。  相似文献   

6.
赣江流域气象干旱与水文干旱特征及其概率关系   总被引:1,自引:0,他引:1  
《人民长江》2021,52(5)
为探明赣江流域气象干旱与水文干旱之间的关系,基于赣江流域1960~2018年降水和径流量资料,分别计算标准化降水指数(SPI)和径流指数(SSI),基于游程理论识别气象干旱和水文干旱事件并分析干旱特征变化过程,同时利用Copula函数和条件概率分布分析干旱重现期以及气象干旱与水文干旱概率关系。结果表明:(1) 6个月时间尺度下SPI和SSI相关性最好,水文干旱对气象干旱无滞后,水文干旱严重于气象干旱,2000年以后水文干旱呈加重趋势;(2)相同单变量重现期下,气象干旱联合重现期大于水文干旱,同现重现期小于水文干旱;(3)随着气象干旱加重,不同等级的水文干旱发生概率增加,发生气象干旱情况下引发水文干旱的概率为0.892。研究结果可为赣江流域抗旱预警提供参考。  相似文献   

7.
滦河流域气象干旱向水文干旱传播特征及风险分析   总被引:1,自引:0,他引:1  
张璇  许杨  郝芳华  郝增超 《水利学报》2022,53(2):165-175
干旱是一种复杂的自然灾害,气象干旱可能导致水文干旱等灾害,严重影响社会经济发展。探明气象干旱向水文干旱传播的特征及规律,可为减小干旱损失、保障流域供水用水安全提供技术支持。本文基于滦河山区1960—2017年的气象水文数据,应用游程原理识别气象水文干旱事件,甄别二者间的传播特征,并借助Copula模型评估气象干旱向水文干旱的风险和干旱传播的临界关系。结果表明:(1)在1960—2017年期间,与气象干旱事件相比,水文干旱事件具有频率低、历时长、峰值低的特点;(2)滦河地区气象干旱和水文干旱传播关系以单场气象干旱向单场水文干旱传播为主;(3)气象干旱向水文干旱的传播存在明显的滞后效应,从上游至下游地区干旱滞后时间依次增长;(4)Gumbel Copula函数能够更准确地评估该流域干旱传播风险,结果显示上游地区发生干旱传播的风险低于下游地区,上、下游地区气象干旱发展成水文干旱的临界历时分别为0.93个月和1.26个月,临界峰值强度分别为0.66和0.44。本研究可为评价不同干旱事件间的传播与演变关系,构建流域干旱风险评价模型提供新思路。  相似文献   

8.
南盘江流域水文干旱对气象干旱的响应特征研究   总被引:2,自引:0,他引:2  
选取南盘江流域3个站点40年(1970年-2009年)的逐月径流资料和20个站点同期逐月降水资料,计算标准化径流指数(SSFI)和不同时间尺度的标准化降水指数(SPI),从中选取水文干旱样本和同期的SPI进行统计分析,研究水文干旱对气象干旱的响应特征。结果表明:南盘江流域SSFI对SPI具有良好的响应关系;SSFI对SPI的响应关系随时间尺度的不同相关性不同;总体来看,流域内水文干旱对气象干旱的响应时间约为6个月。  相似文献   

9.
《人民珠江》2021,42(7)
对不同干旱类型之间传递阈值研究可有效分析干旱传递的发生规律和机理,特别是对气象干旱向水文干旱传递阈值的研究。以东江流域为研究对象,计算月尺度的标准化降水指数SPI和标准化径流指数SRI,并基于游程理论识别干旱事件,提取干旱事件及其特征,包括干旱历时和干旱烈度。对发生时间全部或部分重叠的气象干旱事件和水文干旱事件进行匹配。对匹配后的干旱特征属性进行边缘分布拟合,验证气象干旱和水文干旱的历时或烈度之间的相关性,基于二变量Copula函数分别建立气象干旱与水文干旱特征的联合分布模型,计算不同气象干旱条件下不同等级水文干旱(中旱、重旱、极旱)发生的条件概率,取条件概率为0.95时对应的气象干旱历时或烈度值,作为气象干旱向该等级水文干旱传递的干旱历时(烈度)阈值。结果表明:东江流域气象干旱历时和烈度的最优拟合函数均为伽玛分布,水文干旱历时的最优拟合函数为伽玛分布,水文干旱烈度的边缘分布函数为广义正态分布。Gumbel-copula函数拟合干旱历时和烈度的效果较好。东江流域中旱、重旱、极旱等级的干旱历时传递阈值分别为6.9、8.3、9.4个月;干旱烈度的传递阈值分别为4.6、5.7、6.6。干旱传递阈值可以为水文干旱的预测以及防旱减灾的决策提供参考。  相似文献   

10.
基于戴-帕尔默干旱强度指数(Dai Palmer drought severity index,Dai-PDSI)和径流干旱指数(streamflow drought index,SDI),分析云南地区2009—2014年持续性气象干旱与水文干旱时空演变特征,并利用NCAR/NCEP再分析资料,从西太平洋副热带高压、青藏高压、南支槽、对流层垂直运动及水汽垂直分布等视角,分析2009—2014年云南持续性干旱的原因。结果表明:(1)2009—2014年是云南地区自1961年以来最严重的一次持续性极端干旱过程,2009年10月—2010年9月是最干旱的时段;夏季与冬季是干旱最严重的两个季节。(2)在空间上,云南中东部旱情最重,东南部稍轻。(3)水文干旱伴随气象干旱而生,金沙江和南盘江出现重度水文干旱,澜沧江出现中等水文干旱,从强度上讲,水文干旱弱于气象干旱。(4)夏季西太平洋副热带高压偏西偏强,青藏高压持续偏强、中心偏西,云南上空的大气持续受它们控制,盛行下沉气流;冬季南支槽偏弱,不利于引导孟加拉湾水汽北上;在其他季节,大气多以下沉运动为主,对流层水汽严重不足。  相似文献   

11.
基于SPEI的海河流域干旱时空演变特征及环流成因分析   总被引:1,自引:0,他引:1  
基于海河流域31个气象站1961—2017年逐日气象资料、美国国家环境预报中心(NCEP)和美国国家大气研究中心(NCAR)再分析数据集,计算了多时间尺度标准化降水蒸散指数(SPEI),分析了海河流域1961—2017年干旱时空演变特征,并结合流域夏季500 hPa等位势高度场分析了流域干旱演变特征的环流成因。结果表明:1961—2017年海河流域有轻微干旱趋势,且长历时干旱主要集中于1980—2017年,但干旱强度呈减弱趋势,春末(5、6月)湿润化趋势显著,夏季(7、8月)干旱化趋势显著;空间分布上,海河流域内57.4%的区域呈现干旱化趋势,19.0%的区域呈现干旱减弱趋势,全流域夏季呈显著干旱化趋势;蒙古高压增强、西太平洋副热带高压西移、南扩以及增强的环流特征不利于水汽输送及降水形成,高压系统的增强和水汽输送的减少是流域夏季干旱化趋势的原因之一。  相似文献   

12.
基于标准化降水蒸散指数(SPEI)和标准化径流指数(SRI),比较了黄河流域气象干旱和水文干旱的时空分布差异,分析了二者时间尺度上的关联性,并选取典型干旱事件进一步探讨了两种干旱类型的传递关系。结果表明:两种干旱类型空间上有相似的趋势和频次,但在黄河源区和黄河中南部(渭河流域)差异显著,其干旱历时均有随年代延长的趋势,水文干旱历时增长尤为明显;在时间尺度上,SPEI与SRI在大部分区域基本一致,但在黄河源区和渭河流域差异较大,尤其是短时间尺度上差异更显著;气象干旱与水文干旱并非一一对应,多场短历时间断气象干旱受时滞效应、异常气象波动等影响,可能引发一场长历时连续水文干旱或多场短历时间断水文干旱,一场长历时连续气象干旱强度衰减可能引发多场短历时间断水文干旱。  相似文献   

13.
淮河流域极端旱涝特征分析   总被引:2,自引:0,他引:2  
利用淮河流域历史水文气象、水旱灾害受灾成灾等系列资料,分析了极端旱涝的暴雨、洪水、洪灾和干旱灾害特征,以及天气成因,揭示了交替随机发生极端旱涝的基本规律.结果表明,1470-2010年淮河流域发生的极端旱涝分别为46和63次,平均5a发生1次极端早涝;梅雨期降水量的极端偏多(或偏少)是形成极端洪涝(或干旱)最直接的因素;中高纬度西风环流和副高的季节性异常是发生极端洪涝(或干旱)的根本原因.  相似文献   

14.
基于标准化降水指数的淮河流域干旱 演变特征分析   总被引:5,自引:0,他引:5  
利用淮河流域35个气象站点的降水资料,采用标准化降水指数(Standardized Drecipitafion in- dex , SP1)分析了淮河流域近50年(1961 } 2010年)的年度干旱指数,并利用干旱发生频率、干旱站次比和干旱强度三项干旱指标分析了淮河流域的干旱演变特征。研究结果表明,近50年来,淮河流域以轻旱、中旱为主,重旱、特旱相对较少,有干旱发生面积有逐年递减而发生强度呈增强趋势。在当前气候变化背景下,淮河流域干旱对农业生产的不利影响有减小的趋势。  相似文献   

15.
1961-2005年黄河流域极端气候事件变化趋势   总被引:3,自引:0,他引:3  
利用黄河流域58个气象站点1961-2005年的逐日平均气温、最高气温、最低气温和逐日降水量数据,采用百分比阈值法定义极端气温和极端强降水事件,计算气象综合干旱指数(CI),并分析了黄河流域极端气候事件的变化趋势及其空间格局.结果表明:黄河流域极端低温和极端高温天数分别呈减少和增加趋势,平均速率分别为-3.8d/10a和1.7d/10a;年极端强降水总量的变化趋势存在着明显的区域差异,河源区增加最显著,而中游的黄土高原中、东部减少最显著;干旱天数呈减少趋势,河源区减幅最大,河套-宁夏平原以及鄂尔多斯高原西北部的减幅最小.  相似文献   

16.
为了评估气候变化对怒江流域干旱演变的影响,本研究建立了GBHM-NJ分布式水文模型,利用实测站点资料率定参数并验证模型精度,模拟了1961—2010年长时间序列流域水文过程,并分别采用标准化降水指数(SPI)和标准化径流指数(SSI)分析了流域气象干旱和水文干旱的时空演变特点。结果表明:(1)GBHM-NJ模型能较好地模拟怒江流域的径流过程和水文响应的空间特征。(2)1961—2010年间,怒江流域发生气象干旱的频率、覆盖面积和强度呈增加趋势,其中1994年和2009年气象干旱最为严重。(3)在空间上,怒江流域的年度气象干旱频率约为28%,中游地区干旱频率比较高、主要分布在左贡站和八宿站附近,上游地区次之,下游地区相对较低。(4)水文干旱进入20世纪90年代和21世纪以后明显增强,年尺度干旱以轻旱为主,季尺度干旱特旱多发生在秋冬季。总之,气候变化环境下怒江流域干旱呈现增强趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号