共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xuan Cheng;Guhui Gao;Rong Liu;Xiaolu Gui;Bingzhe Bai;Chun Feng; 《国际钢铁研究》2024,95(3):2300619
An air-cooled low-carbon Mn–Si–Cr alloyed steel with multiphase microstructure of carbide-free bainite/martensite (CFB/M) is developed. The kinetics of bainitic transformation during air-cooling process is discussed via considering the transformation latent heat with help of the measured temperature-cooling curves. Results show that the CFB formed during air cooling can effectively refine the multiphase microstructure and stabilize the film-like retained austenite that contributes to transformation-induced plasticity effect upon deformation. An optimum combination of strength, ductility, and toughness of the air-cooled bainitic steel is achieved (tensile strength: 1418 MPa, total elongation: 15.8%, and Charpy V-notch impact energy: ≈71 J). The newly developed Mn–Si–Cr alloyed air-cooled bainitic steel exhibits superior mechanical properties to the commercial 23CrNi3Mo steel but has a much lower alloy cost. 相似文献
3.
无碳化物贝氏体组织中的残余奥氏体对提高贝氏体钢轨的韧塑性作出了突出贡献,为了在铁路运营时使钢轨仍保持较高的韧塑性,需要控制好贝氏体钢轨残余奥氏体的稳定性。通过对热轧空冷、热轧空冷+低温回火贝氏体钢轨在不同环境温度下残余奥氏体稳定性的分析,回火贝氏体钢轨在不同试验温度(包括低温)条件下拉伸性能的分析,在模拟钢轨运营的试验条件下疲劳性能的分析及相应条件下残余奥氏体含量的测定,说明低温回火处理提高了贝氏体钢轨中残余奥氏体的稳定性,模拟钢轨运营的试验条件下,贝氏体钢轨中的残余奥氏体基本是稳定的。 相似文献
4.
The effect of thermomechanical processing(TMP)on the mechanical properties of hot rolled multiphase steel was investigated.TMP was conducted using a laboratory hot rolling mill,in which three different kinds of finish rolling deformation degrees and temperatures were applied.The results indicate that polygonal ferrite,granular bainite,and a considerable amount of stabilized retained austenite can be obtained by TMP.The stability of the retained austenite increases with decreasing finish rolling temperature and increasing finish rolling deformation degrees.Ultimate tensile strength(σb),total elongation(δ),and the product of ultimate tensile strength by total elongation(σb·δ)for 50% reduction at finish rolling temperature of 700 ℃ reach maximum values [791 MPa,36% and 28 476(MPa·%),respectively]. 相似文献
5.
6.
利用Gleeble 1500热应力 应变模拟机研究了铌含量、热变形参数(终轧温度和卷取温度)对相变诱发塑性(TRIP)钢组织和性能的影响。实验结果表明:不含铌实验钢的残余奥氏体量、残余奥氏体相中的碳含量、宏观维氏硬度和抗拉强度与常规低碳硅锰系TRIP钢的水平相当;增加铌含量,残余奥氏体量和残余奥氏体相中的碳含量有所下降,而宏观维氏硬度和抗拉强度提高;铌含量为0014%、终轧温度为780 ℃、卷取温度为400 ℃时,残余奥氏体量、残余奥氏体相中的碳含量与宏观维氏硬度和抗拉强度具有最佳组合。 相似文献
7.
Herein, the microstructure and mechanical properties of a high-carbon bainitic steel treated by long-time bainitic austempering and short-time austempering plus tempering processes are compared. The multiphase microstructures are characterized by dilatometry, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to correlate with mechanical properties. Results show that although long-time austempering treatment can reduce the volume fraction of brittle martensite, no significant improvement is observed in fracture damage resistance. Besides, the cementite is prone to precipitation from the austenite at the later period of the long-time austempering process. The cementite precipitation in austenite decreases the carbon content in retained austenite (RA) and consequently reduces the mechanical stability of RA. In contrast, the cementite has not been able to precipitate from austenite after short-time austempering treatment, whereas the martensite is softened and the stability of RA is improved during subsequent tempering. Therefore, excellent mechanical properties are obtained in the samples treated by short-time austempering plus tempering process: ultimate tensile strength, 1489 MPa, yield strength, 1014 MPa, total elongation, 33.2%, and the product of strength and elongation (PSE) of 48.4 GPa%, where PSE is increased by 27% compared with the sample after long-time bainitic austempering. 相似文献
8.
9.
10.
YI Hai-long DU Lin-xiu WANG Guo-dong LIU Xiang-hua 《钢铁研究学报(英文版)》2006,13(3):36-39,67
Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate that bainite starting temperature decreases with raising cooling rate and increases with increasing deformation temperature. Deformation has an accelerative effect on the bainite transformation when the specimens are deformed at 950 ℃. When the deformation temperature increases, the effect of deformation on bainite starting temperature is weakened. The amount of bainite is influenced by strain, cooling rate, and deformation temperature. When the specimens are deformed below 900 ℃, equiaxed ferrites are promoted and the bainite transformation is suppressed. 相似文献
11.
为了研究中碳高强贝氏体钢中的残余奥氏体体积分数在不同等温情况下的变化规律,通过X射线衍射试验、热模拟试验和扫描电子显微镜观察等,分析了等温淬火条件对中碳高强贝氏体钢中残余奥氏体体积分数和组织的影响。结果表明,最终残余奥氏体的体积分数受贝氏体相变和马氏体相变的共同影响。贝氏体相变量决定了未转变奥氏体的体积分数及其化学稳定性,从而影响随后的马氏体相变量及最终残余奥氏体体积分数。此外,随着相变温度的升高,开始由于贝氏体相变量逐渐减少,残余奥氏体体积分数先增加(300~350 ℃),随后由于马氏体相变量增加,残余奥氏体体积分数减少(350~400 ℃)。 相似文献
12.
13.
14.
《钢铁研究学报(英文版)》2016,(3):289-296
A novel ultra-high-strength bainitic steel was designed.The analysis of its mechanical properties by quasistatic testing showed that upper bainitic steel exhibited an ultimate tensile strength of 2 260 MPa(engineering stress)and an ultimate compressive strength of more than 2 700MPa(true stress).The ultra-high strength of upper bainitic steel was mainly attributed to untempered martensite and upper bainite with a feather-like microstructure.Moreover,lower bainitic steel demonstrated an ultimate tensile strength of 1 922 MPa(engineering stress)and an ultimate compressive strength of 2 500MPa(true stress).The ultra-high strength of lower bainitic steel was primarily due to untempered martensite and lower bainite with an acicular microstructure.The untempered martensite in the two kinds of bainitic steels was produced in different ways.The dynamic test results showed that the ultimate compressive strengths of the two bainitic steels were maintained at 1 600MPa(true stress)under high strain rates(1 100and2 200s-1)at 600℃,because of the added tungsten,confirming the satisfactory hot hardness property of the steel.Furthermore,lower bainitic steel showed better comprehensive mechanical properties than upper bainitic steel. 相似文献
15.
16.
Using Gleeble 1500 system, the influence of holding time on bainite transformation in deformed niobium microalloyed steel during continuous cooling was analyzed, and the carbides in upper bainite were also systematically researched. The results show that the occurrence of the static recrystallization decreases the amount of bainite with an increase in the holding time and the emergence of retained austenite (RA) with the longer holding time. Two types of carbides were observed in upper bainite with regard to their precipitation sites. They either existed between the bainite ferrite laths or co existed with RA. The formation mechanism of two kinds of carbides was analyzed by combining TEM micrographs with the model. 相似文献
17.
双相钢具有高强度的同时表现出良好的成形性能,因而被广泛应用。这类钢具有高的n值、均匀伸长率和总伸长率,不过,限制高强度双相钢应用的因素之一是在冲裁边部拉延过程中出现失效。为了开发具有良好冲裁边部塑性的高强双相钢,必须精心控制组织中硬相和软相的比例和硬度。冲裁边部拉延时出现的失效机制与微观组织密切相关(不同相的比例、硬度、尺寸和分布),发现在铁素体-马氏体界面出现裂纹萌生。研究了退火前的条件(热轧和冷轧条件)、不同的连续镀锌线工艺过程以及合金化元素对双相钢冲裁边部成形性能的影响,发现所有这三个参数都对扩孔试验中测定的冲裁边部塑性产生强烈影响。 相似文献
18.
19.
摘要:采用光学与扫描电子显微镜、X射线衍射等手段研究了不同等温温度(300、250、200℃)对于高碳(质量分数0.79%)贝氏体钢低温转变样品的相含量、组织尺寸和力学性能的变化规律。结果表明,随贝氏体等温温度的降低,贝氏体最终转变量更高,贝氏体铁素体板条和薄膜状残余奥氏体宽度、块状残余奥氏体尺寸减小,抗拉强度升高,塑韧性降低。300℃的贝氏体抗拉强度为1525MPa,贝氏体铁素体宽度是116nm,而200℃的贝氏体铁素体板条尺寸达到62nm,抗拉强度达到1 928MPa。研究发现,在未充分转变的贝氏体样品中,尺寸大于4.7μm的块状残余奥氏体在冷却过程中易发生马氏体相变,而小于该尺寸的残余奥氏体比较稳定,可以保留到最终组织中。 相似文献
20.
采用现代高分辨电子-光学分析技术及光学显微镜等,对低碳Ni-Cr-Mo钢(C≥0.06%)中M/A岛及其回火特性进行分析。结果表明,有两种类型的M/A岛,一种为可聚成团状的小尺寸M/A岛(即粒状贝氏体中的M/A岛),它所在的铁素体基体呈胞状结构,位错密度较高,胞状之间为小角度关系;另一种为孤立的块状M/A岛(类似双相钢中的M/A岛),它所在的铁素体基体与多边形铁素体类似,位锗密度较低,透射电镜下没有看到亚结构。前者M/A岛碳含量较高,回火后析出的碳化物尺寸较粗大。而且前者M/A岛中残留奥氏体量比后者高,故粒状贝氏体回火抗力较大是由于残留奥氏体量较多的缘故。 相似文献