首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For quasi‐2D perovskite light‐emitting diodes, the introduction of insulating bulky cation reduces the charge transport property, leading to lowered brightness and increased turn‐on voltage. Herein, a dual‐ligand strategy is adopted to prepare perovskite films by using an appropriate ratio of i‐butylammonium (iBA) and phenylethylammonium (PEA) as capping ligands. The introduction of iBA enhances the binding energy of the ligands on the surface of the quasi‐2D perovskite, and effectively controls the proportion of 2D perovskite to allow more efficient energy transfer, resulting in the great enhancement of the electric and luminescent properties of the perovskite. The photoluminescence (PL) mapping of the perovskite films exhibits that enhanced photoluminescence performance with better uniformity and stronger intensity can be achieved with this dual‐ligand strategy. By adjusting the proportion of the two ligands, sky‐blue perovskite light‐emitting diodes (PeLEDs) with electroluminescence (EL) peak located 485 nm are achieved with a maximum luminance up to 1130 cd m?2 and a maximum external quantum efficiency (EQE) up to 7.84%. In addition, the color stability and device stability are significantly enhanced by using a dual‐ligand strategy. This simple and feasible method paves the way for improving the performance of quasi‐2D PeLEDs.  相似文献   

2.
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6? layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials.  相似文献   

3.
Perovskite light‐emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi‐2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light‐emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi‐2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi‐2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi‐2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m?2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs.  相似文献   

4.
Color‐saturated red light‐emitting diodes (LEDs) with emission wavelengths at around 620–640 nm are an essential part of high‐definition displays. Metal halide perovskites with very narrow emission linewidth are promising emitters, and rapid progress has been made in perovskite‐based LEDs (PeLEDs); however, the efficiency of the current color—pure red PeLEDs—still far lags behind those of other‐colored ones. Here, a simple but efficient strategy is reported to gradually down‐shift the Fermi level of perovskite nanocrystals (NCs) by controlling the interaction between NCs and their surface molecular electron acceptor—benzyl iodide with aromatic rings—and realize p‐doping in the color‐saturated 625 nm emitting NCs, which significantly reduces the hole injection barrier in devices. Besides, both the luminescence efficiency and electric conductivity of perovskite NCs are enhanced as additional advantages as the result of surface defects passivation. As a result, the external quantum efficiency for the resulting LED is increased from 4.5% to 12.9% after benzyl iodide treatment, making this device the best‐performing color‐saturated red PeLED so far. It is further found that the hole injection plays a more critical role than the photoluminescence efficiency of perovskite emitter in determining the LED performance, which implies design principles for efficient thin‐film planar LEDs.  相似文献   

5.
Perovskite light‐emitting diodes (PeLEDs) have attracted considerable attention because of their potential in display and lighting applications. To promote commercialization of PeLEDs, it is important to improve the external quantum efficiency of the devices, which depends on their internal quantum efficiency (IQE) and light extraction efficiency. Optical simulations have revealed that 20–50% of the light generated in the device will be lost to surface plasmon (SP) modes formed in the metal/dielectric interfaces. Therefore, extracting the optical energy in SP modes to the air will greatly increase the light extraction efficiency of PeLEDs. In addition, the SPs can accelerate radiative recombination of the emitter via near‐field effects. Thus, the IQE of a PeLED can also be enhanced by SP manipulation. In this review, first, general concepts of the SPs and how they can enhance the efficiency of LEDs are introduced. Then recent progresses in SP‐enhanced emission of perovskite films and LEDs are systematically reviewed. After that, the challenges and opportunities of the SP‐enhanced PeLEDs are shown, followed by an outlook of further development of the SPs in perovskite optoelectronic devices.  相似文献   

6.
Metal halide perovskites (MHPs) have attracted significant attention as light‐emitting materials owing to their high color purities and tunabilities. A key issue in perovskite light‐emitting diodes (PeLEDs) is the fabrication of an optimal charge transport layer (CTL), which has desirable energy levels for efficient charge injection while blocking opposite charges and enabling perovskite layer growth with reduced interfacial defects. Herein, two poly(fluorene‐phenylene)‐based anionic conjugated polyelectrolytes (CPEs) with different counterions (K+ and tetramethylammonium (TMA+)) are presented as multifunctional passivating and hole‐transporting layers (HTLs). The crystal growth of MHPs grown on different HTLs is investigated through X‐ray photoelectron spectroscopy, X‐ray diffraction, and density functional theory calculation. The CPE bearing the TMA+ counterions remarkably improves the growth of perovskites with suppressed interfacial defects, leading to significantly enhanced emission properties and device performance. The luminescent properties are further enhanced via aging and electrical stress application with effective rearrangement of the counterions on the interfacial defects in the perovskites. Finally, efficient formamidinium lead tribromide‐based quasi‐2D PeLEDs with an external quantum efficiency of 10.2% are fabricated. Using CPEs with varying counterions as a CTL can serve as an effective method for controlling the interfacial defects and improving perovskite‐based optoelectronic device properties.  相似文献   

7.
Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light‐emitting applications during the past two years. Here, blue‐emission (≈470 nm) Cs‐based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High‐brightness blue perovskite light‐emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Förster or Dexter energy transfer is analyzed through time resolved photoluminescence. By tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).  相似文献   

8.
This paper reports highly bright and efficient CsPbBr3 perovskite light‐emitting diodes (PeLEDs) fabricated by simple one‐step spin‐coating of uniform CsPbBr3 polycrystalline layers on a self‐organized buffer hole injection layer and stoichiometry‐controlled CsPbBr3 precursor solutions with an optimized concentration. The PeLEDs have maximum current efficiency of 5.39 cd A?1 and maximum luminance of 13752 cd m?2. This paper also investigates the origin of current hysteresis, which can be ascribed to migration of Br? anions. Temperature dependence of the electroluminescence (EL) spectrum is measured and the origins of decreased spectrum area, spectral blue‐shift, and linewidth broadening are analyzed systematically with the activation energies, and are related with Br? anion migration, thermal dissociation of excitons, thermal expansion, and electron–phonon interaction. This work provides simple ways to improve the efficiency and brightness of all‐inorganic polycrystalline PeLEDs and improves understanding of temperature‐dependent ion migration and EL properties in inorganic PeLEDs.  相似文献   

9.
Metal halide perovskite nanostructures have sparked intense research interest due to their excellent optical properties. In recent years, although the green and red perovskite light-emitting diodes (PeLEDs) have achieved a significant breakthrough with the external quantum efficiency exceeding 20%, the blue PeLEDs still suffer from inferior performance. Previous reviews about blue PeLEDs focus more on 2D/quasi-2D or 3D perovskite materials. To develop more stable and efficient blue PeLEDs, a systematic review of blue perovskite quantum dots (PQDs) is urgently demanded to clarify how PQDs evolve. In this review, the recent advances in blue PQDs involving mixed-halide, quantum-confined all-bromide, metal-doped and lead-free PQDs as well as their applications in PeLEDs are highlighted. Although several excellent PeLEDs based on these PQDs have been demonstrated, there are still many problems to be solved. A deep insight into the advantages and disadvantages of these four types of blue-emitting PQDs is provided. Then, their respective potential and issues for blue PeLEDs have been discussed. Finally, the challenges and outlook for efficient and stable blue PeLEDs based on PQDs are addressed.  相似文献   

10.
Perovskite light‐emitting diodes (PeLEDs) show great application potential in high‐quality flat‐panel displays and solid‐state lighting due to their steadily improved efficiency, tunable colors, narrow emission peak, and easy solution‐processing capability. However, because of high optical confinement and nonradiative charge recombination during electron–photon conversion, the highest reported efficiency of PeLEDs remains far behind that of their conventional counterparts, such as inorganic LEDs, organic LEDs, and quantum‐dot LEDs. Here a facile route is demonstrated by adopting bioinspired moth‐eye nanostructures at the front electrode/perovskite interface to enhance the outcoupling efficiency of waveguided light in PeLEDs. As a result, the maximum external quantum efficiency and current efficiency of the modified cesium lead bromide (CsPbBr3) green‐emitting PeLEDs are improved to 20.3% and 61.9 cd A?1, while retaining spectral and angular independence. Further reducing light loss in the substrate mode using a half‐ball lens, efficiencies of 28.2% and 88.7 cd A?1 are achieved, which represent the highest values reported to date for PeLEDs. These results represent a substantial step toward achieving practical applications of PeLEDs.  相似文献   

11.
The field of organic–inorganic hybrid perovskite light‐emitting diodes (PeLEDs) has developed rapidly in recent years. Although the performance of PeLEDs continues to improve through film quality control and device optimization, little research has been dedicated to understanding the recombination dynamics in perovskite thin films. Likewise, little has been done to investigate the effects of recombination dynamics on the overall light‐emitting behavior of PeLEDs. Therefore, this study investigates the recombination dynamics of CH3NH3PbI3 thin films with differing crystal sizes by measurement of fluence‐dependent transient absorption dynamics and time‐resolved photoluminescence. The aim is to find out the link between recombination dynamics and device behavior in PeLEDs. It is found that bimolecular and Auger recombination become more efficient as the crystal size decreases and monomolecular recombination rate is affected by the trap density of perovskite. By defining the radiative efficiency Φ(n), which relates to the monomolecular, bimolecular, and Auger recombination, the fundamental recombination properties of CH3NH3PbI3 films are discerned in quantitative terms. These findings help us to understand the light emission behavior of PeLEDs. This study takes an important step toward establishing the relationship between film structure, recombination dynamics, and device behavior for PeLEDs, thereby providing useful insights toward the design of better perovskite devices.  相似文献   

12.
All present designs of perovskite light‐emitting diodes (PeLEDs) stem from polymer light‐emitting diodes (PLEDs) or perovskite solar cells. The optimal structure of PeLEDs can be predicted to differ from PLEDs due to the different fluorescence dynamics and crystallization between perovskite and polymer. Herein, a new design strategy and conception is introduced, “insulator–perovskite–insulator” (IPI) architecture tailored to PeLEDs. As examples of FAPbBr3 and MAPbBr3, it is experimentally shown that the IPI structure effectively induces charge carriers into perovskite crystals, blocks leakage currents via pinholes in the perovskite film, and avoids exciton quenching simultaneously. Consequently, as for FAPbBr3, a 30‐fold enhancement in the current efficiency of IPI‐structured PeLEDs compared to a control device with poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) as hole‐injection layer is achieved—from 0.64 to 20.3 cd A?1—while the external quantum efficiency is increased from 0.174% to 5.53%. As the example of CsPbBr3, compared with the control device, both current efficiency and lifetime of IPI‐structured PeLEDs are improved from 1.42 and 4 h to 9.86 cd A?1 and 96 h. This IPI architecture represents a novel strategy for the design of light‐emitting didoes based on various perovskites with high efficiencies and stabilities.  相似文献   

13.
Organic–inorganic hybrid perovskite materials with mixed cations have demonstrated tremendous advances in photovoltaics recently, by showing a significant enhancement of power conversion efficiency and improved perovskite stability. Inspired by this development, this study presents the facile synthesis of mixed‐cation perovskite nanocrystals based on FA(1?x )Csx PbBr3 (FA = CH(NH2)2). By detailed characterization of their morphological, optical, and physicochemical properties, it is found that the emission property of the perovskite, FA(1?x )Csx PbBr3, is significantly dependent on the substitution content of the Cs cations in the perovskite composition. These mixed‐cation perovskites are employed as light emitters in light‐emitting diodes (LEDs). With an optimized composition of FA0.8Cs0.2PbBr3, the LEDs exhibit encouraging performance with a highest reported luminance of 55 005 cd m?2 and a current efficiency of 10.09 cd A?1. This work provides important instructions on the future compositional optimization of mixed‐cation perovskite for obtaining high‐performance LEDs. The authors believe this work is a new milestone in the development of bright and efficient perovskite LEDs.  相似文献   

14.
Semiconductor quantum dots (QDs) are among the most promising next‐generation optoelectronic materials. QDs are generally obtained through either epitaxial or colloidal growth and carry the promise for solution‐processed high‐performance optoelectronic devices such as light‐emitting diodes (LEDs), solar cells, etc. Herein, a straightforward approach to synthesize perovskite QDs and demonstrate their applications in efficient LEDs is reported. The perovskite QDs with controllable crystal sizes and properties are in situ synthesized through one‐step spin‐coating from perovskite precursor solutions followed by thermal annealing. These perovskite QDs feature size‐dependent quantum confinement effect (with readily tunable emissions) and radiative monomolecular recombination. Despite the substantial structural inhomogeneity, the in situ generated perovskite QDs films emit narrow‐bandwidth emission and high color stability due to efficient energy transfer between nanostructures that sweeps away the unfavorable disorder effects. Based on these materials, efficient LEDs with external quantum efficiencies up to 11.0% are realized. This makes the technologically appealing in situ approach promising for further development of state‐of‐the‐art LED systems and other optoelectronic devices.  相似文献   

15.
The quality of perovskite films is critical to the performance of perovskite solar cells. However, it is challenging to control the crystallinity and orientation of solution‐processed perovskite films. Here, solution‐phase van der Waals epitaxy growth of MAPbI3 perovskite films on MoS2 flakes is reported. Under transmission electron microscopy, in‐plane coupling between the perovskite and the MoS2 crystal lattices is observed, leading to perovskite films with larger grain size, lower trap density, and preferential growth orientation along (110) normal to the MoS2 surface. In perovskite solar cells, when perovskite active layers are grown on MoS2 flakes coated on hole‐transport layers, the power conversion efficiency is substantially enhanced for 15%, relatively, due to the increased crystallinity of the perovskite layer and the improved hole extraction and transfer rate at the interface. This work paves a way for preparing high‐performance perovskite solar cells and other optoelectronic devices by introducing 2D materials as interfacial layers.  相似文献   

16.
Organic–inorganic hybrid perovskite light‐emitting diodes (PeLEDs) are promising for next‐generation optoelectronic devices due to their potential to achieve high color purity, efficiency, and brightness. Although the external quantum efficiency (EQE) of PeLEDs has recently surpassed 20%, various strategies are being pursued to increase EQE further and reduce the EQE gap compared to other LED technologies. A key point to further boost EQE of PeLEDs is linked to the high refractive index of the perovskite emissive layer, leading to optical losses of more than 70% of emitted photons. Here, it is demonstrated that a randomly distributed nanohole array with high‐index contrast can effectively enhance outcoupling efficiency in PeLEDs. Based on a comprehensive optical analysis on the perovskite thin film and outcoupling structure, it is confirmed that the nanohole array effectively distributes light into the substrate for improved outcoupling, allowing for 1.64 times higher light extraction. As a result, highly efficient red/near‐infrared PeLEDs with a peak EQE of 14.6% are demonstrated.  相似文献   

17.
At the heart of electrically driven semiconductors lasers lies their gain medium that typically comprises epitaxially grown double heterostuctures or multiple quantum wells. The simultaneous spatial confinement of charge carriers and photons afforded by the smaller bandgaps and higher refractive index of the active layers as compared to the cladding layers in these structures is essential for the optical‐gain enhancement favorable for device operation. Emulating these inorganic gain media, superb properties of highly stable low‐threshold (as low as ≈8 µJ cm?2) linearly polarized lasing from solution‐processed Ruddlesden–Popper (RP) perovskite microplatelets are realized. Detailed investigations using microarea transient spectroscopies together with finite‐difference time‐domain simulations validate that the mixed lower‐dimensional RP perovskites (functioning as cladding layers) within the microplatelets provide both enhanced exciton and photon confinement for the higher‐dimensional RP perovskites (functioning as the active gain media). Furthermore, structure–lasing‐threshold relationship (i.e., correlating the content of lower‐dimensional RP perovskites in a single microplatelet) vital for design and performance optimization is established. Dual‐wavelength lasing from these quasi‐2D RP perovskite microplatelets can also be achieved. These unique properties distinguish RP perovskite microplatelets as a new family of self‐assembled multilayer planar waveguide gain media favorable for developing efficient lasers.  相似文献   

18.
Metal halide perovskites, as a new generation of semiconductor materials, have been widely applied in various optoelectronic devices, especially in the field of perovskite light-emitting diodes (PeLEDs). The external quantum efficiencies (EQEs) of green, red, and near-infrared PeLEDs have exceeded 20% for the last few years, which are comparable to those of the state-of-the-art organic light-emitting diodes (OLEDs) and quantum-dot light-emitting diodes (QLEDs). However, the performances of blue PeLEDs lag far behind those of their counterparts, presumably due to the low quantum yields of blue perovskite films, the instability of the emission spectra, and the difficulties in charge injection for the devices under operation conditions. In this review, the structures and physical properties of blue emissive perovskite materials and the preparation methods of the corresponding perovskite films are firstly addressed. Then, the recent advances and strategies to improve the efficiency of blue PeLEDs are outlined, and the main challenges faced with the blue PeLEDs are also discussed. Finally, an outlook on blue LEDs based on perovskite materials is proposed.  相似文献   

19.
A new approach to generate a two‐photon up‐conversion photoluminescence (PL) by directly exciting the gap states with continuous‐wave (CW) infrared photoexcitation in solution‐processing quasi‐2D perovskite films [(PEA)2(MA)4Pb5Br16 with n = 5] is reported. Specifically, a visible PL peaked at 520 nm is observed with the quadratic power dependence by exciting the gap states with CW 980 nm laser excitation, indicating a two‐photon up‐conversion PL occurring in quasi‐2D perovskite films. Decreasing the gap states by reducing the n value leads to a dramatic decrease in the two‐photon up‐conversion PL signal. This confirms that the gap states are indeed responsible for generating the two‐photon up‐conversion PL in quasi‐2D perovskites. Furthermore, mechanical scratching indicates that the different‐n‐value nanoplates are essentially uniformly formed in the quasi‐2D perovskite films toward generating multi‐photon up‐conversion light emission. More importantly, the two‐photon up‐conversion PL is found to be sensitive to an external magnetic field, indicating that the gap states are essentially formed as spatially extended states ready for multi‐photon excitation. Polarization‐dependent up‐conversion PL studies reveal that the gap states experience the orbit–orbit interaction through Coulomb polarization to form spatially extended states toward developing multi‐photon up‐conversion light emission in quasi‐2D perovskites.  相似文献   

20.
Metal halide perovskite materials have attracted great attention owing to their fascinating optoelectronic characteristics and low cost fabrication via facile solution processing. One of the potential applications of these materials is to employ them as color‐conversion layers (CCLs) for visible blue light to achieve full‐color displays. However, obtaining thick perovskite films to realize complete color conversion is a key challenge. Here, the fabrication of micrometer‐level thick CsPbBr3 perovskite films is presented through a facile vacuum drying approach. An efficient green photoconversion is realized in a 3.8 µm thick film from blue light @ 463 nm. For a back luminance of 1000 cd m?2, the brightness of the resulting green emission can reach as high as 200 cd m?2. Furthermore, only ≈2% of decay in brightness is observed when the films are tested after 18 days of exposure to ambient environment. In addition, a potential design is also proposed for full‐color displays with perovskite materials incorporated as CCLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号