首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The effects of concentration and molecular weight of oat β‐glucans on properties of soya bean protein isolate (SPI) thermal gels prepared by heating at 90℃for 30 min were investigated. Compared with control (free of β‐glucan) formulations, the presence of β‐glucans (0.5–1.5%, w/v) largely enhanced storage modulus (G′) and texture properties of SPI (12%, w/v) thermal gels measured by dynamic oscillatory rheometry and texture profile analysis, which were developed as increasing β‐glucan concentration and molecular weight. It is possible that β‐glucans could cause the formation of protein aggregates to produce gels through hydrophobic interactions. Mixed gel systems at low ionic strength showed higher G′ resulting from the lower denaturation temperature of SPI, which was beneficial to the formation of gel structure. In addition, although adding a certain amount of β‐glucan into SPI reduced water‐holding capacity of mixed gels, high molecular weight of β‐glucan improved their water‐holding capacity compared to control formulations attributed to the improvement of the structural integrity of the mixed gel network.  相似文献   

3.
BACKGROUND: β‐Glucan is a bioactive component of cereal grains that has many potential uses and health‐promoting benefits. Recent research has focused on improving the nutritional value of food by increasing human exposure to β‐glucan. This study looks at the development of a farm‐level baseline model (including scenario analysis) to evaluate the impact of pre‐ and postharvest stages (including genotypic factors, environmental conditions, agronomic factors and storage) on β‐glucan levels in barley. Monte Carlo simulation techniques were employed to model various stages in pre‐ and postharvest processes and to simulate the factors influencing the level of β‐glucan content in both hulled barley (HB) and hull‐less barley (HLB) genotypes. RESULTS: The baseline model found that the mean simulated level of β‐glucan was 40.99 and 56.77 g kg?1 for HB and HLB genotypes respectively. A sensitivity analysis highlighted that genotype was the most important parameter in determining the final β‐glucan content (correlation coefficients of 0.66 and 0.78 for HB and HLB respectively), more so than any of the agronomic factors analysed. The scenario analysis highlighted the importance of harvest date (scenario 2) and storage conditions (scenario 3), with a potential 32.6 and 32.7% decrease in β‐glucan (compared with the baseline model) if harvesting is carried out early during physiological maturity (i.e. at growth stage 92) and a potential 20.1 and 19.5% increase in β‐glucan for HB and HLB respectively if storage time is minimised. CONCLUSION: This study predicted the influence of genotypic, pre‐ and postharvest operations on β‐glucan content and thus allows strategies to be identified to influence β‐glucan content in barley products. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
The beneficial role of dietary fibre in human nutrition has lead to a growing demand for incorporation of novel fibres, particularly barley β‐glucans, into foods. Barley β‐glucans are regarded as dietary fibre ingredients that are partially soluble in water. The aim of the present work was to investigate the possibility of using barley β‐glucan in milk systems in relation to the coagulation properties of milk containing β‐glucan, and to the rheology, texture and microstructure of fresh curds. The rate of coagulation and optimum coagulum cutting time were evaluated using rheological measurements. Results show that coagulation/gelation time of the milk can be reduced significantly with the incorporation of β‐glucan; curd yield increased and the viscoelastic properties of the curd were altered with β‐glucan additions. The relationships between curd rheological behaviour and its microstructure are discussed in relation to use of novel hydrocolloids in dairy processing. The results suggest that barley β‐glucan has the potential to be used as a fat replacer in low‐fat dairy systems. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
β‐Glucans were isolated from six Greek barley cultivars (Persefoni, Kos, Thessaloniki, Athinaida, Dimitra and Triptolemos) by water extraction at 47 °C, enzymatic removal of starch and protein and subsequent precipitation of the water‐soluble β‐glucans with 37% (w/v) ammonium sulfate saturation. The purity of barley β‐glucans was high (>93% dry basis) with some small contamination by protein (<3.84%). The molecular size of the β‐glucan isolates was determined by high‐performance size‐exclusion chromatography (HPSEC); the weight‐average molecular weights and the intrinsic viscosities ranged between 0.45 × 106 and 1.32 × 106 and 2.77 and 4.11 dl g?1, respectively. Structural features of barley β‐glucans were revealed by 13C NMR spectroscopy and high‐performance anion‐exchange chromatography (HPAEC) of the oligomers released by the hydrolytic action of lichenase. Lichenase degradation showed that β‐glucans from all barley cultivars consisted of blocks of cellotriosyl and cellotetraosyl units, accounting for 90.6–92.3% of the total oligomers released, with a molar proportion of these units between 2.31 and 2.77. Rheological measurements of aqueous solutions/dispersions of β‐glucans showed the behaviour of non‐interacting polysaccharides and a transition from the typical viscoelastic response to gel‐like properties after a time period that depended on the molecular size of the polysaccharide. The lowest molecular size β‐glucans from the Triptolemos cultivar showed shorter gelation times than their higher molecular weight counterparts. The effect of sugar incorporation (glucose, fructose, sucrose, xylose and ribose), at a concentration of 30% (w/v), to the β‐glucans gels (6% w/v) on compression parameters seemed to be related to the type of sugar used; the pentose sugars substantially reduced gel firming. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
β‐Glucanase from barley malt is known to be thermolabile but important in the mashing process. Therefore, the potential of increasing the thermostability of β‐glucanase in ACES buffer (0.1 M, pH 5.6) by high hydrostatic pressure has been investtigated. Inactivation of the enzyme as well as changes of the conversion rate in response to combined pressure‐temperature treatments in the range of 0.1–900 MPa and 30–75°C were assessed by analyzing the kinetic rate constants. A significant stabilization of β‐glucanase against temperature‐induced inactivation was detected at 400 MPa. With increasing pressure up to 600 MPa the catalytic activity of β‐glucanase was progressively decelerated. However, for the overall depolymerization reaction of β‐glucans in ACES buffer (0.1 M, pH 5.6) a maximum was identified at 215 MPa and 55°C yielding approximately 2/3 higher degradation of β‐glucan after 20 min as compared to the maximum at ambient pressure (45°C).  相似文献   

7.
This paper reports on the influence of molecular weight and concentration of barley β‐glucans on the rheological properties of wort and beer. Environmental conditions such as pH, maltose level in wort, ethanol content of beer, shearing and shearing temperature were also examined for their effects on wort and beer viscosities. In the range of 50–1000 mg/L, β‐glucans increased solution viscosity linearly with both molecular weights (MW) of 31, 137, 250, 327, and 443 kDa and concentration. The influence of MW on the intrinsic viscosity of β‐glucans followed the Mark‐Houwink relationship. Shearing wort and beer at approximately 13,000 s?1for 35 s was found to increase the wort viscosity but reduce beer viscosity. Shearing wort at 20°C influenced β‐glucan viscosity more than shearing at 48°C and 76°C whereas the shearing temperature (0, 5 and 10°C) did not effect the viscosity of beer. At lower pHs, shearing was found to reduce the viscosity caused by β‐glucans in wort but had no effect in beer. Higher concentrations of maltose in wort and ethanol in beer also increased the viscosity of β‐glucan polymers. It was found that β‐glucans had higher intrinsic viscosities in beer than in wort (5°C), and lower critical overlap concentrations (C*) in beer than in wort.  相似文献   

8.
β‐glucans are known for their immune‐modulating properties. However, the heterogeneity of these glucose polymers makes a distinction between the different sources and structures necessary—a fact that has been little allowed for in the literature. We have focused on β‐glucans from cereals as they are already used as functional food ingredients due to their established cholesterol lowering effect. Cereal β‐glucans have shown in vitro activity on cytokine secretion, phagocytic activity and cytotoxicity of isolated immune cells, and activation of the complement system. Animal studies suggest a possible protective effect against an intestinal parasite, against bacterial infection, and a synergistic effect in antibody‐dependent cellular cytotoxicity. Animal studies have shown activity of orally applied cereal β‐glucans indicating uptake or interaction with cells of the gastrointestinal tract. However, uptake is still debated, interaction with intestinal epithelial cells has been suggested but not clarified, and mechanisms of action remain largely unknown. So far, cereal β‐glucans have not shown immune modulation in the few conducted human studies and further studies are needed to clarify their effect.  相似文献   

9.
Several commercial beers have been analyzed for their content of β‐glucans, pentosans and their degradation products using high performance liquid chromatography, thin layer chromatography and chemical and enzymic analysis procedures. The beers tested contained high levels of residual high molecular weight pentosan, but much less high molecular weight β‐glucan. The beers also contained sizeable levels of oligosaccharides, especially trisaccharides, reflecting the incomplete degradation of polymeric materials in malting and mashing and the inability of yeast to ferment them. There is substantially more β‐linked glucosyl material in beer than pentosyl substances, although the higher molecular weight of the latter probably makes it more likely to represent soluble fibre. In respect of fibre claims for the beers examined, even for the beer containing the least pentosan, it seems that less than a litre of the product would afford sufficient material.  相似文献   

10.
This study explored the dose‐dependent effect of oat cereal β‐glucan on improving metabolic indexes of obesity mice. C57‐Bl mice were randomized to chow diet (N) group and high fat diet group and other three doses of oat β‐glucan groups (low β‐glucan, medium β‐glucan, and high β‐glucan). Energy intake, glucose, lipids, and appetite related hormones were tested. Dose‐dependent relation was observed on oat β‐glucan doses and body weight change, average energy intake, total cholesterol, HDL cholesterol, plasma neural peptide Y, arcuate neural peptide Y mRNA, and arcuate neural peptide Y receptor 2 mRNA level. Oat β‐glucan helped to increase plasma peptide Y‐Y and intestine peptide Y‐Y expression in obesity mice.  相似文献   

11.
Forty one samples of the malting barley cultivar Scarlett were collected from both Scandinavia (15 from Finland and 10 from Denmark) and the Iberian Peninsula (15 from Spain and 1 from Portugal), during the harvest years of 1998 and 1999. These samples were subjected to grain analyses, comprising protein content, hordein fractions by high performance liquid chromatography (HPLC) and β‐glucan content. The samples were micro‐malted and the malts were analysed to determine different patterns in the influence of grain composition on malt extract development linked to the two contrasting environments. The most obvious difference found between the Scandinavian and Iberian barleys was the effect of the total and insoluble barley β‐glucans. They were an effective barrier of malt extract in the North, but appeared to increase extract in the South. A conclusion was that the positive effect of β‐glucans in the Iberian barleys was a consequence of their greater capacity to synthesise and release β‐glucan hydrolases during germination.  相似文献   

12.
The methods for laboratory and commercial milling of dehulled barley grain are described. In the laboratory‐scale barley at 10%, 12% and 14% moisture, was milled to produce three fine‐products (flours) and two coarse‐products (grits). The yield of flours and grits was about 40% and 60%, respectively. Increased products yield and the β‐glucan content in products with increasing moisture of ground grain were observed. Barley at 14% moisture was milled under commercial conditions to produce the following end‐products: fine‐ and coarse‐grained flours, middlings and fine grits. These products differed in their average contents of β‐glucans, total dietary fiber, ash and protein. The fine‐grained grit from impact milling coarse grit had the highest contents of β‐glucans, total dietary fiber, ash and protein. This product, with a weight yield of 18.6%, contained 6.72% β‐glucans, 25.12% total dietary fiber, 2.19% ash, and 15.83% protein. All these values were at about 50%, 72%, 55% and 24%, respectively higher than in dehulled barley. Lowest contents of chemical components in fine‐grained flours were found. Developed method of commercial milling of barley will allow to obtain new, nutritionally valuable barley products, which have potential for use in human foods.  相似文献   

13.
Foods containing barley or oats are often marketed as healthy because of the dietary fiber (1→3) (1→4)‐β‐D‐glucan. Processing conditions can affect the molecular structure of these dietary fibers, which in turn affect quality and properties of the products. In this study, the effect of puffing and jet cooking conditions on changes in the solubility and molecular weight of barley β‐glucans was investigated. Barley flour was processed in a pasta extruder to produce particles similar in size and shape to rice. These particles were puffed at 230, 250 and 270C for 6, 8 and 10 s in a rice cake machine. Solubility and molecular weight of barley β‐glucans were determined by using water extracts (25 or 65C). The amount of β‐glucan extracted in water at 25C increased from 41.1% in cakes puffed at 230C/6 s to 69.7% in cakes puffed at 270C/10 s. The amount of β‐glucan extracted in water at 65C increased from 63.6% in samples puffed at 230C/6 s to 99.1% in samples puffed at 270C/10 s. The molecular weight of β‐glucans in barley was reduced by puffing and jet cooking treatments.  相似文献   

14.
A collective report on the extraction and isolation of β‐glucan from grain sources, namely, oat, barley, and wheat is presented. An analysis on the effect of medium, pH, and temperature on the purity and yield of the β‐glucan derived under acidic/alkaline/aqueous/enzymatic conditions is also made. Water extraction and alkali extraction processes are preferred as the yield and recovery of extracted β‐glucan were good. Cost‐effective development of the process for deriving high molecular weight β‐glucan is the current requirement for its wide applications in food and pharmaceutical industries.  相似文献   

15.
BACKGROUND: β‐Glucans have enjoyed renewed interest as a functional food ingredient, with current attention focused on optimising β‐glucan levels in finished products without compromising final product quality. In order to measure the uncertainty about the level of β‐glucans in barley, two different statistical methods (Bayesian inference and Bootstrap technique) were applied to measured levels of β‐glucan in three different varieties of barley grain (n = 83). RESULTS: The resulting probability density distributions were similar for the full data set and also when applied to smaller sample sizes, highlighting the potential for either method in quantifying the total uncertainty in β‐glucan levels. Bayesian inference was used to model the effect of nitrogen treatment on β‐glucan and protein contents in barley. The model found that a low level of fertilisation (50 kg N ha?1) did not have a significant effect on β‐glucan or protein content. However, fertilisation above this level did result in an increase in β‐glucan and protein levels, the effect seeming to plateau at 100 kg N ha?1. In addition, the uncertainty distributions were significantly different for two consecutive years of data, highlighting the potential environmental influence on β‐glucan content. CONCLUSION: The model developed in this study could be a useful tool for processors to quantify the uncertainty about the initial level of β‐glucan in barley and to evaluate the influence of environmental factors, thus enabling them to formulate their ingredient base to optimise levels of β‐glucan without compromising final product quality. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
For many years it was accepted that 6 mg of β‐carotene were required to produce 1 mg of vitamin A in the form of retinol. The equivalence was based on the assumptions that two‐thirds of dietary β‐carotene are not absorbed, while in the metabolism of the remaining third 1 mol of β‐carotene is converted to 1 mol retinol. Recently, the bioequivalence was raised to 12 mg β‐carotene and 1 mg retinol. The objective of this review was to re‐examine the data that were used to support the new equivalence ratio, especially since some of these data were obtained in developing countries where infestation with gut parasites and exposure to other infections is common, yet the influence of inflammation on plasma carotenoid and retinol concentrations is frequently ignored. Bioequivalence studies examined in this review include those done in developing and developed countries, depletion and repletion studies, feeding with vegetable sources of β‐carotene or pure supplements, influence of helminths, carotenoid interactions and matrix effects and studies using stable isotopes (SI). SI studies show the bioefficacy of β‐carotene conversion to retinol is generally poor even for pure β‐carotene unless the dose is small and fed regularly until equilibration is reached. Retinol formation appears to be inversely influenced by previous vitamin A intake, the amount of material given and current vitamin A status. In spite of technical complexities, more SI studies where liver reserves of vitamin A are determined pre and post intervention are needed to evaluate β‐carotene bioefficacy of different vegetable sources. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
A population of barley lines, derived by mutation in the hull‐less variety, Penthouse, was included in a replicated trial, along with Penthouse and the hulled malting cultivar, Optic. Samples were assessed for a range of grain quality traits, then malted, with germination for either 4 or 5 days, prior to kilning. Most lines had grain β‐glucan contents lower than that of Penthouse, but there was no significant correlation between grain and malt β‐glucan content. Malt β‐glucan levels were indicative of differences in cell wall breakdown between 4 and 5 days germination, but negative associations with distilling parameters Extract and Alcohol Yield, were not statistically significant. It was concluded that the lines differed in the rate and extent of cell wall breakdown and that grain shape may influence modification in distal parts of the grain. However, a malting regime, optimised to suit Optic may be less suited to discriminating between hull‐less lines of reasonable quality.  相似文献   

18.
19.
Yeast‐derived beta‐glucans (Y‐BG) are considered immunomodulatory compounds suggested to enhance the defense against infections and exert anticarcinogenic effects. Specific preparations have received Generally Recognized as Safe status and acceptance as novel food ingredients by European Food Safety Authority. In human trials, orally administered Y‐BG significantly reduced the incidence of upper respiratory tract infections in individuals susceptible to upper respiratory tract infections, whereas significant differences were not seen in healthy individuals. Increased salivary IgA in healthy individuals, increased IL‐10 levels in obese subjects, beneficial changes in immunological parameters in allergic patients, and activated monocytes in cancer patients have been reported following Y‐BG intake. The studies were conducted with different doses (7.5–1500 mg/day), using different preparations that vary in their primary structure, molecular weight, and solubility. In animal models, oral Y‐BG have reduced the incidence of bacterial infections and levels of stress‐induced cytokines and enhanced antineoplastic effects of cytotoxic agents. Protective effects toward drug intoxication and ischemia/reperfusion injury have also been reported. In conclusion, additional studies following good clinical practice principles are needed in which well‐defined Y‐BG preparations are used and immune markers and disease endpoints are assessed. Since optimal dosing may depend on preparation characteristics, dose‐response curves might be assessed to find the optimal dose for a specific preparation.  相似文献   

20.
Four types of carbohydrates, including Dendrobium officinale polysaccharide, Dendrobium aphyllum polysaccharide and β‐glucans from yeast and barley, were examined, and their structures were found to mainly contain 1,4‐linked‐β‐d ‐Glcp. Artificially simulated gastrointestinal digestion was conducted to characterise the changes of molecular weight, reducing sugars and released free monosaccharides by high‐performance liquid chromatography, kits and the newly developed gas chromatography (GC)‐mass spectrometry (MS)/MS analysis, which indicated that high molecular weight and complex spatial structures contributed to delayed monosaccharide release following exposure to digestive solution. The spatial structures of carbohydrates were changed during gastric digestion, but their primary structures were destroyed during intestinal digestion. Additionally, for the developed 7890A/7000 GC‐TQ/MS‐MS, the new analytical method was successfully used to analyse very low concentrations of monosaccharides in the simulated gastrointestinal digestive system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号