首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
室温下,考察了溴化铜改性白土对丙硫醇和二甲基硫醚的吸附脱除。每克吸附剂的饱和硫容达到196毫克硫。还考察了铜负载量及吸附剂焙烧温度对脱硫效果的影响。结果表明,吸附剂制备的最佳条件是铜负载量15%,150℃焙烧。从吡啶-红外光谱可以看出B酸有利于脱硫。在溴化铜和二甲基硫醚的反应产物的拉曼光谱上检测到了C-S及Cu-S的振动峰。根据杂化轨道理论和络合吸附反应,丙硫醇和二甲基硫醚在溴化铜改性白土上的吸附是基于S-M机理。  相似文献   

2.
采用负载浸渍法,将活性金属铜引入活性炭孔道内部,并且对其进行N2吸附-脱附及透射电镜表征。使用改性后的AC-2活性炭吸附剂吸附脱除苯模型化合物,当入口苯质量浓度为6.5 g/m3、体积空速为1 000 h-1、吸附温度为20℃时,穿透时间为13 h,吸附量为132 g。经过8个吸附-再生周期,AC-2活性炭吸附剂仍可将固定床吸附器出口苯质量浓度控制在30mg/m3以下。使用改性后的AC-2活性炭吸附剂吸收-吸附脱除石脑油中的VOCs(挥发性有机物),在进气口VOCs质量浓度为100~150 g/m3、体积空速为1 000 h-1、吸附温度为20℃的条件下,其穿透时间为4.5 h。经过4个柴油吸收-吸附-再生周期,AC-2活性炭吸附剂仍维持较稳定的脱VOCs性能。热脱附模型相较于常温脱附模式,更加适用于活性炭吸附剂的脱附再生。  相似文献   

3.
采用等体积浸渍法制备氧化铝基铜吸附剂,以柴油考察制备条件和吸附脱硫工艺条件对吸附剂脱硫性能的影响,并通过XRD和N2吸附-脱附等方法对其进行表征。表征结果显示,铜负载量4%(w)(按CuO计)己达到氧化铝负载硝酸铜单分子层最大分散量。实验结果表明,氧化铝基铜吸附剂的较佳制备条件为:载体采用乙酸溶液浸泡处理,氮气中于450℃下焙烧4h;吸附脱硫工艺条件为:吸附温度60℃,WHSV=1.0 h-1,铜负载量2%(w)。在此条件下,吸附剂总脱硫率为66.4%,其中各种硫化物的脱硫率分别为:噻吩类硫化物100.0%、甲基苯并噻吩85.1%、C2-苯并噻吩51.2%、多烷基苯并噻吩9.6%、二苯并噻吩81.0%、甲基二苯并噻吩77.9%、C2-二苯并噻吩74.8%、多烷基二苯并噻吩69.9%。  相似文献   

4.
预处理和再生条件对载铜13X吸附剂脱硫性能的影响   总被引:1,自引:0,他引:1  
采用浸渍法制备了载铜13X分子筛吸附剂,以模拟汽油(C6~C8烷烃+噻吩)为原料,重点考察了预处理条件和再生条件对载铜13X吸附剂脱硫性能的影响。实验确定吸附剂适宜的预处理条件为:在氮气氛围中,500℃下还原3h;适宜的再生条件为:氮气流量40mL/min,再生温度200℃,吹扫4h。在上述条件下,载铜13X吸附剂对含噻吩的模拟汽油的吸附脱硫具有较好的稳定性。  相似文献   

5.
采用浸渍法制备了载铜活性炭脱硫剂,以新疆油田分公司的彩南2~#气站和石西油田的天然气为原料,重点考察了再生条件对载铜活性炭脱硫剂脱硫性能的影响。适宜的再生条件:蒸汽流量50mL/min,吹扫温度200℃,吹扫时间4h。载铜活性炭脱硫剂具有良好的多次再生能力,对天然气中H_2S吸附脱硫具有较好的稳定性。  相似文献   

6.
采用离子交换法制备Cu2+和Ce4+同时改性的Cu(Ⅱ)-Ce(Ⅳ)/13X分子筛吸附剂,同时制备单一金属离子Cu2+改性的Cu(Ⅱ)/13X和Ce4+改性的Ce(Ⅳ)/13X。采用X射线粉末衍射(XRD)、氮气吸附-脱附等手段对吸附剂进行表征。将碳四烃中的典型硫化物二甲基二硫化物、甲硫醚、叔丁硫醇溶于正庚烷中进行吸附脱硫研究。结果表明:与未改性的13X分子筛相比,Cu2+和Ce4+改性的Cu(Ⅱ)-Ce(Ⅳ)/13X分子筛的比表面积和孔体积有所降低,平均孔径和介孔数量增加,由于两种金属的协同作用,使得Cu(Ⅱ)-Ce(Ⅳ)/13X表现出更好的脱硫性能;Cu(Ⅱ)-Ce(Ⅳ)/13X吸附剂对二甲基二硫化物、甲硫醚、叔丁硫醇的脱除效率均高于单一金属改性后的Ce(Ⅳ)/13X和Cu(Ⅱ)/13X吸附剂;Cu(Ⅱ)-Ce(Ⅳ)/13X吸附剂具有良好的再生性能,第1次再生后脱硫率为新鲜吸附剂的98%。  相似文献   

7.
活性炭制备条件与天然气脱附量的关系   总被引:5,自引:0,他引:5  
以石油焦为原料、KOH为活化剂,在不同的活化条件下制得了系列超高比表面积活性炭(SBET>2500 m2·g-1) 吸附剂,以天然气作为吸附质研究了制备活性炭吸附剂的活化条件与天然气脱附量的关系。结果表明,制备超高比表面积活性炭吸附剂的活化条件对吸附剂的结构及其吸附储存天然气的能力具有较大的影响;在KOH/C质量比为3.0、活化时间为90 min、活化温度为800 ℃时,制得了比表面积达3348 m2·g-1、大于或等于2 nm的孔所占的百分率为65.34%的超高比表面积活性炭;该活性炭吸附剂在25 ℃、2.5 MPa及8.0 MPa时,天然气脱附量分别达460.7 mL·g-1、1043.8 mL·g-1。  相似文献   

8.
以商业化的活性炭(AC)为载体,采用等体积浸渍法制备了不同金属改性的活性炭吸附剂,用于脱除氢气中的噻吩,采用固定床动态吸附法考察了过渡金属改性吸附剂及不同含量Cu改性吸附剂对噻吩的脱除性能。利用N2吸附-脱附、X射线衍射、扫描电子显微镜和能量色散谱等方法对吸附剂进行了表征和分析。结果表明:Cu负载量(w)为3%时,活性炭具有最佳脱硫能力,噻吩穿透时间为22 h,比未改性的活性炭吸附剂延长7 h;活性炭经Cu改性后仍保留了丰富的多孔结构,但比表面积和孔体积均有所下降;改变活性组分CuO在吸附剂表面的分布,对改性吸附剂吸附噻吩有较好的促进作用,有助于提高吸附噻吩的容量。  相似文献   

9.
Ni/ZnO吸附剂脱除催化裂化汽油中的硫   总被引:4,自引:1,他引:3  
 采用等体积浸渍法制备了Ni质量分数为4%的Ni/ZnO吸附剂,以FCC汽油为原料,通过固定床吸附实验评价了Ni/ZnO吸附剂对催化裂化汽油的吸附脱硫性能以及吸附剂的再生性能。结果表明,较高的反应温度、压力和较低的体积空速有利于提高Ni/ZnO对FCC汽油的吸附脱硫效果,并且汽油辛烷值损失小。Ni/ZnO吸附剂脱硫的适宜操作条件为: 温度370~380℃,吸附压力2.0MPa,氢/油摩尔比1.5,体积空速4.0h-1,此时吸附剂的穿透硫容 (硫质量分数达到30μg/g时,认为吸附剂穿透,测定吸附剂中的硫质量分数,即为吸附剂的穿透硫容。)为2.54%,汽油辛烷值损失1.1个单位。该吸附剂可以再生,多次循环使用后其脱硫性能基本保持不变。  相似文献   

10.
采用过量浸渍法制备负载不同金属组分的改性γ-Al2O3吸附剂,并对其进行XRD、扫描电子显微镜和N2物理吸附-脱附表征。在常温常压下,利用小型固定床实验考察该系列吸附剂对由苯并噻吩溶于正庚烷中配制而成的模拟汽油的吸附脱硫性能,着重考察了负载金属种类(Ag、Ce、Cu、Fe、Ni)对吸附剂吸附脱硫性能的影响,以及硝酸银溶液浓度、焙烧温度和焙烧时间对Ag-γ-Al2O3吸附剂吸附脱硫性能的影响及其再生性能。结果表明,在5种不同金属改性γ-Al2O3吸附剂中,Ag-γ-Al2O3吸附剂的吸附脱硫性能最好;在最佳制备条件,即在硝酸银溶液浓度0.2mol/L、焙烧温度450℃、焙烧时间5.5h下制备的Ag-γ-Al2O3对模拟汽油的处理量可达46mL/g。Ag-γ-Al2O3再生吸附剂对模拟汽油的处理量为39mL/g,达到新鲜吸附剂的84.8%。  相似文献   

11.
针对煤基活性炭性能不佳的问题,以太西煤(TX)和灵武煤(LW)为原料,通过对配煤、炭化、活化等工艺的优化,从而制备一种高性能活性炭,并对制备的活性炭进行孔结构表征和柴油吸附脱硫性能评价.结果表明,该活性炭制备的优化工艺条件为:配煤质量比为89%TX+11%LW、活化剂(KOH)质量分数0.8%、炭化温度600℃、升温速...  相似文献   

12.
周广林  王晓胜 《石油化工》2013,42(3):286-291
考察了5A,ZSM-5,13X,NaY等不同类型分子筛的脱硫性能,并以NaY分子筛为载体,采用等体积浸渍法制备了以Cu2+,Zn2+,Ag+为活性组分的分子筛基液化石油气(LPG)精脱硫吸附剂,考察了吸附剂的制备条件,并采用固定床反应器考察了吸附条件对吸附剂脱硫效果的影响。实验结果表明,CuY吸附剂的脱硫性能最好,其适宜的制备条件为:以Cu(NO3)2为活性组分前体,吸附剂中Cu的负载量为9%(w)、浸渍温度60℃、焙烧温度400℃、焙烧时间2 h。在吸附温度为常温、0.6MPa、液态空速1 h-1的条件下,CuY吸附剂可使LPG中的硫含量从198 mg/m3降至5 mg/m3以下。当LPG中的硫含量降至5 mg/m3时,CuY吸附剂的计算穿透硫容为1.23%(w)。  相似文献   

13.
In this work we proposed a novel preparation-adsorption desulfurization method for dibenzothiophene over sawdust-derived nickel/activated carbon prepared by 400°C one step carbonization-activation-modified process. The adsorbent was characterized by X-ray Diffraction (XRD), Boehm titration method, Scanning Electron Microscope (SEM) and N2 adsorption-desorption technology. The result show that 30% HNO3 aqueous solution and calcination 2 h for the 30%-NiO/AC adsorbent trend to better desulfurization performance with NiO active adsorption sites and surface oxygen-containing functional groups. After high temperature adsorption desulfurization, the sawdust-derived nickel/activated carbon occurred activation and reaming again, both the specific surface and the microspore volume have been great changed.  相似文献   

14.
对多种分子筛的脱氯效果进行了对比和筛选,结果表明NaY分子筛具有良好的脱氯性能.以NaY分子筛原粉为活性组分,采用混捏法制备NaY分子筛吸附剂,并以烷基化油为原料,详细考察了NaY分子筛吸附剂的制备条件对吸附剂脱氯性能的影响.试验结果表明,在NaY分子筛原粉/黏结剂质量比为2.0、焙烧温度为400℃、焙烧时间为3 h的...  相似文献   

15.
为了有效移除变压器油中的腐蚀性硫,以二苄基二硫化物(DBDS)为目标物,以活性炭和硝酸铈为原料,通过负载、煅烧还原的方法制备了炭 铈复合吸附剂;考察了在不同硝酸铈用量、煅烧温度、煅烧时间和吸附条件下,该吸附剂对变压器油中DBDS的脱除效果。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和N2吸附-脱附等温线等手段对吸附剂结构进行表征。结果表明:硝酸铈被还原并负载在活性炭上,当煅烧温度为500 ℃、硝酸铈质量分数为80%、煅烧时间为1 h时,复合吸附剂的脱硫性能最佳;当变压器油中该吸附剂质量分数为6%时,在110 ℃条件下吸附2次,每次吸附3 h后,变压器油中的DBDS可完全去除。  相似文献   

16.
为了解决天然气湿法氧化脱硫操作中的硫磺沉积引发的设备堵塞问题,将吸收了H2S的NHD/MDEA/H2O复合脱硫液中加入Fe3+(FeCl3·6H2O)改性玻璃微珠催化剂,在通入氧气情况下进行脱硫液的非均相催化氧化再生。重点考察了硅烷偶联剂(KH550)用量、铁盐浓度及焙烧温度等条件对改性玻璃微珠性能的影响,特别是对脱硫液再生性能的影响。结果表明:当玻璃微珠、KH550、FeCl3·6H2O的质量比为1:4:5时,经300℃焙烧制得的Fe3+表面改性玻璃微珠对脱硫液再生具有良好催化氧化效果,脱硫液重复再生3次,其脱硫性能基本没有变化。  相似文献   

17.
采用等体积浸渍法对ZnO 活性炭吸附脱硫剂进行Cu改性,并采用XRD、BET、TPR等手段对脱硫剂进行表征。以硫质量分数782 μg/g的胜华炼油厂催化加氢汽油为原料,采用10 mL固定床微型反应器评价脱硫剂的脱硫性能,考察Cu的负载量、反应温度、反应压力、氢/油体积比对脱硫剂的脱硫性能影响。结果表明,研制的Cu改性吸附脱硫剂具有较好的选择性深度脱硫能力,烯烃饱和也得到了较好的抑制;最优的工艺条件为反应温度300℃、反应压力1 MPa、液体空速10 h-1、氢/油体积比100。Cu负载量为4%的Cu改性脱硫剂ADS Cu 4具有优异的脱硫性能,在最优工艺条件下得到硫质量分数低于10 μg/g且辛烷值损失仅为03个单位的产品。  相似文献   

18.
磷酸活化稻壳制备柴油脱硫吸附剂   总被引:1,自引:0,他引:1  
 以稻壳为原料,利用磷酸活化法制备柴油脱硫吸附剂。将二苯并噻吩(DBT)溶解在正辛烷中配制成硫质量分数300?g/g模型油,考察了纯磷酸/绝干原料质量比(磷/料比)、活化温度、活化时间及脱除二氧化硅对磷酸活化稻壳吸附剂孔结构、表面酸性质的影响以及对其DBT吸附容量的影响。实验结果表明,磷酸活化稻壳吸附剂比表面积越大,表面中等强酸性基团越多,其DBT吸附容量越大。在本实验范围内,当磷/料比为3的条件下,先在170℃下预活化1h,再在450℃活化1h,制备出的磷酸活化稻壳吸附剂的DBT吸附容量最高,以S计,达到28.89mg/g,除吸附剂脱硅后,比表面积增加, DBT吸附容量进一步增加,达到30.43mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号