首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
针对经典动态规划分段算法只适用于低维时间序列的问题,提出一种基于因子模型和动态规划的多元时间序列分段方法.首先利用增量聚类自动对变化趋势相似的变量序列进行聚类,然后引入动态因子模型使降维后的低维多元时间序列能够最大限度反映原始多元时间序列的整体变化趋势,最后利用动态规划在低维多元时间序列的架构上实现高维多元时间序列的分段.实验结果表明,所提方法对变量个数较多的多元时间序列数据具有良好的分段效果.  相似文献   

2.
为解决多元时间序列中的异常数据问题,在分析已有研究方法的基础上,提出一种基于分割聚类算法和长短期记忆网络结合的大数据异常检测方法。建立多元时间序列聚类模型,采用流水线模型和交替方向乘子法求解,得到子数据分段;使用长短期记忆网络重构各子序列,比较与原始序列的残差检测出异常数据点。以变压器监测数据为例进行异常检测,检测结果表明,该方法具有较高的检测精度。  相似文献   

3.
对当前聚类算法进行研究的基础上,提出了有效地实现多元时间序列聚类的方法.用离散哈达玛变换对多元数据进行降维,求出多元变量相关系数矩阵的特征值作为权值.采用带权值的矩阵相似性度量方法,利用改进的K-means算法对多元时间序列进行聚类分析.实验结果表明,该方法能够有效地实现多元时间序列聚类,把具有相似趋势变化的多元时间序列对象划分到同一类中.  相似文献   

4.
针对基于u-shapelets的时间序列聚类中u-shapelets集合质量较低的问题,提出一种基于最佳u-shapelets的时间序列聚类算法DivUshapCluster。首先,探讨不同子序列质量评估方法对基于u-shapelets的时间序列聚类结果的影响;然后,选用最佳的子序列质量评估方法对u-shapelet候选集进行质量评估;其次,引入多元top-k查询技术对u-shapelet候选集进行去除冗余操作,搜索出最佳的u-shapelets集合;最后,利用最佳u-shapelets集合对原始数据集进行转化,达到提高时间序列聚类准确率的目的。实验结果表明,DivUshapCluster算法在聚类准确度上不仅优于经典的时间序列聚类算法,而且与BruteForce算法和SUSh算法相比,DivUshapCluster算法在22个数据集上的平均聚类准确度分别提高了18.80%和19.38%。所提算法能够在保证整体效率的情况下有效提高时间序列的聚类准确度。  相似文献   

5.
序列分段问题是指将序列进行分段,用这些分段来代表一个序列,使原始序列在视觉角度基本不发生变化。本文首先介绍了三类经典的分段算法,比较它们的优劣,并针对其特点提出了一种改进的基于聚类的滑动窗口分段算法,并将其与经典算法作了一些比较,从而验证了新算法比经典算法有更好的拟合度和收敛性。  相似文献   

6.
基于异时间窗划分的时间序列聚类   总被引:2,自引:1,他引:2       下载免费PDF全文
针对相同时间窗对时间序列进行子序列划分的缺点,提出一种异时间窗的子序列划分方法。为解决划分得到的子序列长度不同,而使用动态时间弯曲算法进行子序列相似性度量的计算速度慢的问题,给出一种不规则时间序列距离度量算法。对异时间窗的子序列划分方法和不规则时间序列距离度量算法进行了实验,结果证明了二者的优越性。  相似文献   

7.
针对时间序列模糊C均值聚类算法对噪声数据敏感,及其未能将数据中少量已标记数据所包含的监督信息进行有效利用的问题,提出了一种改进的鲁棒性半监督模糊C均值聚类算法。该算法中先使用马氏距离提出一种样本不确定性分析方法,并加入到半监督模糊C均值聚类建模中,以消除噪声点的影响。并改进半监督模糊C均值聚类的部分监督机制来加大已标记数据的监督能力。采用能够弹性度量时间序列相似性的时间扭曲编辑距离代替欧氏距离进行聚类。通过对7组公开的时间序列数据集进行实验对比,结果表明所提算法具有良好的聚类效果。  相似文献   

8.
王燕  马倩倩  韩萌 《计算机工程与应用》2012,48(33):162-166,202
现有的各种多元时间序列相似性搜索方法难以准确高效地完成搜索任务。提出了一种基于特征点分段的多元时间序列相似性搜索算法,提取所定义的用于分段的特征点,分段后将原时间序列转化为模式序列,该模式序列能够很好地保留原序列的全局形状特征,再用分层匹配的方法进行相似性搜索。实验结果表明,该方法能够有效刻画序列的全局形状特征,通过分层匹配保留局部的相似性,同时提高搜索准确率。  相似文献   

9.
基于分段线性动态时间弯曲的时间序列聚类算法研究   总被引:4,自引:0,他引:4  
时间序列是一类重要的复杂类型数据,时间序列知识发现正成为知识发现的研究热点之一。欧几里德距离及其扩展作为相似测度被广泛应用于时间序列的比较中,但是这种距离测度时数据没有好的鲁棒性。动态时间弯曲技术是基于非线性动态编程的一种模式匹配算法,但是其计算复杂性相当高。本文提出了基于时间序列分段线性表示的动态时间弯曲算法,通过计算线性分段序列数据之间的最短弯曲路径来获得序列的匹配。对综合控制时间序列数据进行基于不同距离测度的聚类分析对比结果表明本文提出的算法有很高的精度和时振幅差异、嘈声和线性漂移有强的鲁棒性,大大降低计算复杂性,具有良好的应用价值。  相似文献   

10.
针对时间序列传统静态聚类问题,提出了对时间序列进行动态聚类的方法。该方法首先提取时间序列的关键点集合,根据改进的FCM算法找到动态特征明显的时间序列,再利用提出的动态聚类算法确定此类时间序列在不同时间段的所属类别,在改进的FCM算法中采用兰氏距离可以使其对奇异值不敏感。实验结果反映出动态特征明显的时间序列类别随时间演化的特性,表明了方法的可行性和有效性。与已有算法相比,该方法揭示了时间序列的部分动态特征。该方法还可以运用于研究数据挖掘的其他问题。  相似文献   

11.
一个高效的多变量时间序列聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
时间序列聚类分析是数据挖掘研究的一个重要内容。已有的聚类算法大多采用k均值对低维数据进行聚类,不能对高维多变量时间序列(MTS)数据进行有效聚类。提出一种高效的多变量时间序列聚类算法PCA-CLUSTER,首先利用主成分分析对MTS数据降维;选取MTS数据的主成分序列进行K近邻聚类分析。理论分析和实验结果表明算法可以有效解决MTS数据聚类问题。  相似文献   

12.
霍纬纲  程震  程文莉 《计算机应用》2017,37(12):3477-3481
针对已有基于模型的多维时间序列(MTS)聚类算法处理不等长MTS速度较慢的问题,提出了一种基于LR分量提取的MTS聚类算法(MUTSCA〈LRCE〉)。首先,采用等频离散化方法符号化MTS;然后,计算用于表达MTS样本各维时间序列之间时序模式的LR向量,对每个LR向量进行排序后从其两端提取固定数目的不同关键分量,所有提取的关键分量拼接形成表示MTS样本的模型向量,该过程将不等长MTS样本集转换为等长的模型向量集;最后,采用k-means算法对生成的等长模型向量集进行聚类分析。在多个公共数据集上的实验结果表明,与基于模型的MTS聚类算法——MUTSCA〈LR〉相比,所提算法能够在保证聚类效果的前提下,显著提高不等长MTS数据集的聚类速度。  相似文献   

13.
王玲  李泽中 《控制与决策》2024,39(2):568-576
现有多元时间序列分段算法中分段点的选择以及分段个数的确定往往需要分别独立完成,大大增加了算法的计算复杂度.为解决上述问题,提出一种基于多元时间序列的自适应贪婪高斯分段算法.该算法将多元时间序列各个分段所对应的数据解释为来自不同多元高斯分布的独立样本,进而将分段问题转化为协方差正则化的最大似然估计问题进行求解.为提高学习效率,采用贪婪搜寻方法使每个段的似然值最大化进而近似地找到最优分段点,并且在搜寻的过程中利用信息增益方法自适应地获取最优的分段个数,避免分段个数确定和分段点选择分别独立进行,从而减少计算的复杂度.基于多种领域的真实数据集实验结果表明,所提出方法的分段精度以及运行效率均优于传统方法,并且能够有效完成多元时间序列的异常检测任务.  相似文献   

14.
Traditional and fuzzy cluster analyses are applicable to variables whose values are uncorrelated. Hence, in order to cluster time series data which are usually serially correlated, one needs to extract features from the time series, the values of which are uncorrelated. The periodogram which is an estimator of the spectral density function of a time series is a feature that can be used in the cluster analysis of time series because its ordinates are uncorrelated. Additionally, the normalized periodogram and the logarithm of the normalized periodogram are also features that can be used. In this paper, we consider a fuzzy clustering approach for time series based on the estimated cepstrum. The cepstrum is the spectrum of the logarithm of the spectral density function. We show in our simulation studies for the typical generating processes that have been considered, fuzzy clustering based on the cepstral coefficients performs very well compared to when it is based on other features.  相似文献   

15.
The main purpose of this paper is to study a new method to model and predict a chaotic time series using a fuzzy model. First, the GK fuzzy clustering method is used to confirm the input space of the fuzzy model. The goal is to divide the training patterns into representative groups so that patterns within one cluster are more similar than those belonging to other clusters. Then, the Kalman filtering algorithm with singular value decomposition is applied to estimate the consequent parameters of the fuzzy model in order to avoid error delivery and error accumulation. The effectiveness of the proposed method is evaluated through simulated examples, including Mackey‐Glass time series and Lorenz chaotic systems. The results show that the proposed method provides effective and accurate prediction. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

16.
17.
Fuzzy c-means (FCM) clustering has been widely used in image segmentation. However, in spite of its computational efficiency and wide-spread prevalence, the FCM algorithm does not take the spatial information of pixels into consideration, and hence may result in low robustness to noise and less accurate segmentation. In this paper, we propose the weighted image patch-based FCM (WIPFCM) algorithm for image segmentation. In this algorithm, we use image patches to replace pixels in the fuzzy clustering, and construct a weighting scheme to able the pixels in each image patch to have anisotropic weights. Thus, the proposed algorithm incorporates local spatial information embedded in the image into the segmentation process, and hence improve its robustness to noise. We compared the novel algorithm to several state-of-the-art segmentation approaches in synthetic images and clinical brain MR studies. Our results show that the proposed WIPFCM algorithm can effectively overcome the impact of noise and substantially improve the accuracy of image segmentations.  相似文献   

18.
In recent years, spectral clustering has become one of the most popular clustering algorithms in areas of pattern analysis and recognition. This algorithm uses the eigenvalues and eigenvectors of a normalized similarity matrix to partition the data, and is simple to implement. However, when the image is corrupted by noise, spectral clustering cannot obtain satisfying segmentation performance. In order to overcome the noise sensitivity of the standard spectral clustering algorithm, a novel fuzzy spectral clustering algorithm with robust spatial information for image segmentation (FSC_RS) is proposed in this paper. Firstly, a non-local-weighted sum image of the original image is generated by utilizing the pixels with a similar configuration of each pixel. Then a robust gray-based fuzzy similarity measure is defined by using the fuzzy membership values among gray values in the new generated image. Thus, the similarity matrix obtained by this measure is only dependent on the number of the gray-levels and can be easily stored. Finally, the spectral graph partitioning method can be applied to this similarity matrix to group the gray values of the new generated image and then the corresponding pixels in the image are reclassified to obtain the final segmentation result. Some segmentation experiments on synthetic and real images show that the proposed method outperforms traditional spectral clustering methods and spatial fuzzy clustering in efficiency and robustness.  相似文献   

19.
传统的模糊C均值FCM聚类图像分割算法在显微图像分割中由于没有考虑光照不均匀的影响而降低了分割的效果,为此,提出了一种光照鲁棒的FCM显微图像分割算法。该算法用正交基函数的线性组合模拟不均匀光照,并引入到FCM算法的目标函数中,进行图像的模糊分割。算法不仅降低了非均匀光照对分割效果的影响,还可以同步估计不均匀光照场。实验结果表明,该方法非常有效。  相似文献   

20.
现有的多元时间序列相似性度量方法 难以平衡度量准确性和计算效率之间的矛盾.针对该问题,首先,对多元时间序列进行多维分段拟合;然后,选取各分段上序列点的均值作为特征;最后,以特征序列作为输入,利用动态时间弯曲算法实现相似性度量.实验结果表明,所提出方法参数配置简单,能够在保证度量准确性的前提下有效降低计算复杂度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号