共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
针对电厂循环流化床锅炉NOx排放问题进行了研究,并对人工蜂群算法进行了改进,结合最小二乘支持向量机建立了锅炉燃烧NOx排放模型,对锅炉可调参量进行了优化,降低了NOx排放浓度。将改进的人工蜂群算法与基本的人工蜂群算法和粒子群算法进行比较,说明基于改进人工蜂群算法所建立的模型能够很好的预测NOx的排放浓度,具有很强的辨识能力和泛化能力,同时也表明了改进人工蜂群算法计算速度快的优点及优化数据上的优势,通过仿真试验,优化后NOx排放浓度明显降低,体现了其工程实用价值。 相似文献
3.
4.
5.
摘要: 电气故障诊断具有重要的实际应用价值,针对电气故障诊断中的支持向量机(SVM)参数选择问题,提出了人工蜂群优化SVM的电气故障诊断模型。首先采用小波分析去除信号中的噪声,并提取特征,然后采用人工蜂群优化算法确定SVM的最优参数,建立电气故障诊断模型,最后通过与其他电气故障诊断模型进行对比实验。结果表明,WA-ABC-SVM可以描述电气设备状态与特征间的变化关系,提高了电气故障的诊断正确率,诊断结果要高于对比模型。 相似文献
6.
在燃气轮机组仿真研究中,确保压气机特性计算的准确可靠是建立燃气轮机组仿真模型的重要前提.针对现有轴流式压气机特性外推方法的不足,对压气机作出合理假设,提出了压气机平均级叶栅特性的概念,进而将压气机分解为若干串联的微元级,分段计算压气机的特性,从而使非设计工况下级进出口相似条件能够得到保证.以雷诺相似定律为基础,将每一个微元级特性外推,得到各微元级特性图,进而重构出压气机整机特性图.结果表明,新方法可以明显减小现有外推方法产生的误差,并由于平均级叶栅特性和虚拟微元级概念的引入,拓宽了压气机特性线获取的途径,提高了外推特性的可靠性. 相似文献
7.
8.
9.
准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处理,灰色关联度提取与预测日相似度高的历史日以提升预测精度,主成分分析(PCA)对输入数据进行降维,从而提高光伏功率预测的速度。其次,针对单核支持向量机对多维数据特征提取能力相对较差的问题,基于线性核函数和径向基核函数建立多核支持向量机预测模型,根据每个核函数支持向量机的预测误差计算不同的权重,从而增强对输入数据特征提取能力并提高预测精度。采用灰狼优化(GWO)算法确定不同核函数支持向量机的参数以提高预测精度。最后,通过北京某光伏电站的历史数据集验证了该算法的预测效果。实例分析表明,与传统预测算法相比,预测精度和速度都有显著提高。 相似文献
10.
针对我国水资源安全评价问题,结合支持向量机(SVM)对小样本、非线性问题分类效果好的特点,用麻雀搜索算法(SSA)对支持向量机的惩罚因子(C)和核函数参数(g)进行优化,建立基于麻雀搜索算法优化的支持向量机模型(SSA-SVM)用于区域水资源安全评价,以洛阳市某区域为例进行研究。结果表明,SSA-SVM法与T-S模糊神经网络法得到的评价等级结果基本一致,SSA-SVM模型具有寻优速度快,不易陷入局部最优等特点,可用于区域水资源安全评价。 相似文献
11.
12.
13.
14.
15.
压气机的流量特性(图)是压气机使用的主要参考依据,但是目前仍主要依靠试验方法得到。笔者探讨利用稳态可压缩粘性流体微分方程和k-ε两方程紊流模型,采用有限体积法对离心压气机的工作状况进行三维仿真计算。对某型压气机,通过改变扩压器和k-ε蜗壳结构参数,得到优化模型。根据优化模型在每一转速不同出口静压工况下的计算结果,得到压气机的流量特性图。结果表明,CFD方法可以得到压气机的流量特性图,并且可以方便地分析压气机各部分的流动损失,是压气机设计及性能前期预测的一种有效方法。 相似文献
16.
17.
针对支持向量机(SVM)在短期负荷预测中,根据经验选取参数导致预测精度下降的问题,提出一种基于布谷鸟搜索算法(CSA)优化SVM的短期负荷预测新方法(CSA-SVM)。先以历史负荷、温度、湿度等属性构成训练样本集的输入向量作为SVM的输入,以负荷值作为输出,建立SVM预测模型;再根据训练误差,以CSA对SVM中惩罚因子和核参数进行寻优;最后,按照CSA寻优获得的最优参数建立基于CSA-SVM的预测模型并开展短期负荷预测。实际负荷数据试验显示,相较于SVM模型、粒子群(PSO)优化SVM模型、BP神经网络模型,CSA-SVM具有更高的预测精度,能够满足电力系统短期负荷预测精度需求。 相似文献
18.
19.
基于蚁群优化的最小二乘支持向量机风速预测模型研究 总被引:1,自引:0,他引:1
基于最小二乘支持向量机理论,建立风速预测模型。同时,由于最小二乘支持向量机参数选取尚无有效方法,该文尝试采用蚁群算法理论来进行参数优化选择。选取某风场前四天的实测风速(采样间隔30min),应用所建立的风速预测模型,来预测第五天的48个风速值,其预测的平均绝对百分比误差仅为9.53%,预测效果较理想,验证了应用蚁群优化算法理论与最小二乘支持向量机理论进行风速预测的可行性,可为风电场规划选址和风力发电功率预测等提供理论支持。 相似文献