共查询到17条相似文献,搜索用时 62 毫秒
1.
基于哈希编码的无监督跨模态检索方法以其存储代价低、检索速度快、无需人工标注信息的优点受到了广泛的关注.最近的方法通过融合各模态的相似度信息构建联合模态相似度矩阵,用以指导哈希编码网络的学习.然而,这些方法未考虑数据特征空间的流形结构差异对相似度的影响而引入了噪声降低了模型的检索性能.本文提出了一种基于联合模态语义相似度修正的无监督跨模态哈希方法(JSSR),引入特征空间中的流形结构信息修正相似度矩阵中的噪声信息,同时增强语义相关样本的亲和力,使得生成的哈希码更具判别性和区分度.在典型的公开数据集NUS-WIDE和MIR Flickr上的实验结果表明,JSSR在跨模态检索精度上超越了现有的方法. 相似文献
2.
为了解决现有无监督二元哈希方法由于存在较大量化损失而导致检索精度较低的问题,在CIBHash方法的基础上,提出了一种新的基于对比学习的无监督三元哈希方法——CUTHash,将三元哈希编码用于图像检索。具体来说,首先,使用融合了解耦对比损失的对比学习框架,在目标数据集上进行无监督的图像特征学习;接着,为了得到三元哈希编码,对学习到的图像特征使用平滑函数进行量化操作,解决离散函数量化后导致的零梯度问题;最后,应用改进后的对比损失,约束同属一张图像的增强视图的特征在哈希空间中尽可能地接近,从而使得三元哈希编码具有一定的辨识力,使其更好地应用于无监督图像检索任务。在CIFAR-10、NUS-WIDE、MSCOCO以及ImageNet100数据集上进行了大量对比实验,取得了较当前主流的无监督哈希方法更好的检索性能,从而验证了CUTHash方法的有效性。 相似文献
3.
无监督域适应(Unsupervised domain adaptation,UDA)方法通过全局特征分布匹配实现源域到目标域的知识迁移,但忽略了细粒度的局部实例信息。本文提出了一种基于双层域自适应(Two-tiered domain adaptation,TTDA)的无监督行人重识别方法,使用全尺寸网络(Omni-scale network,OSNet)作为骨干网络,在端到端深度学习框架中联合执行源域和目标域之间的全局特征分布匹配和局部实例匹配,从源域和目标域之间不同行人ID的关联中挖掘可迁移的有用知识,并通过知识选择机制提高了跨域适应性。在多个大型公开数据集上的实验结果表明,与其他先进方法相比,所提方法在源域到目标域的无监督行人重识别的平均精度均值(mean Average precision,mAP)和top-k命中率均取得显著提升。 相似文献
4.
已有的无监督跨模态哈希(UCMH)方法主要关注构造相似矩阵和约束公共表征空间的结构,忽略了2个重要问题:一是它们为不同模态的数据提取独立的表征用以检索,没有考虑不同模态之间的信息互补;二是预提取特征的结构信息不完全适用于跨模态检索任务,可能会造成一些错误信息的迁移。针对第一个问题,提出一种多模态表征融合结构,通过对不同模态的嵌入特征进行融合,从而有效地综合来自不同模态的信息,提高哈希码的表达能力,同时引入跨模态生成机制,解决检索数据模态缺失的问题;针对第二个问题,提出一种相似矩阵动态调整策略,在训练过程中用学到的模态嵌入自适应地逐步优化相似矩阵,减轻预提取特征对原始数据集的偏见,使其更适应跨模态检索,并有效避免过拟合问题。基于常用数据集Flickr25k和NUS-WIDE进行实验,结果表明,通过该方法构建的模型在Flickr25k数据集上3种哈希位长检索的平均精度均值较DGCPN模型分别提高1.43%、1.82%和1.52%,在NUS-WIDE数据集上分别提高3.72%、3.77%和1.99%,验证了所提方法的有效性。 相似文献
5.
无监督的深度哈希学习方法由于缺少相似性监督信息,难以获取高质量的哈希编码.因此,文中提出端到端的基于伪成对标签的深度无监督哈希学习模型.首先对由预训练的深度卷积神经网络得到的图像特征进行统计分析,用于构造数据的语义相似性标签.再进行基于成对标签的有监督哈希学习.在两个常用的图像数据集CIFAR-10、NUS-WIDE上的实验表明,经文中方法得到的哈希编码在图像检索上的性能较优. 相似文献
6.
当前主流的Web图像检索方法仅考虑了视觉特征,没有充分利用Web图像附带的文本信息,并忽略了相关文本中涉及的有价值的语义,从而导致其图像表达能力不强。针对这一问题,提出了一种新的无监督图像哈希方法——基于语义迁移的深度图像哈希(semantic transfer deep visual hashing,STDVH)。该方法首先利用谱聚类挖掘训练文本的语义信息;然后构建深度卷积神经网络将文本语义信息迁移到图像哈希码的学习中;最后在统一框架中训练得到图像的哈希码和哈希函数,在低维汉明空间中完成对大规模Web图像数据的有效检索。通过在Wiki和MIR Flickr这两个公开的Web图像集上进行实验,证明了该方法相比其他先进的哈希算法的优越性。 相似文献
7.
基于图的无监督跨模态哈希学习具有存储空间小、检索效率高等优点, 受到学术界和工业界的广泛关注, 已成为跨模态检索不可或缺的工具之一. 然而, 图构造的高计算复杂度阻碍其应用于大规模多模态应用. 主要尝试解决基于图的无监督跨模态哈希学习面临的两个重要挑战: 1)在无监督跨模态哈希学习中如何高效地构建图? 2)如何解决跨模态哈希学习中的离散值优化问题? 针对这两个问题, 分别提出基于锚点图的跨模态学习和可微分哈希层. 具体地, 首先从训练集中随机地选择若干图文对作为锚点集, 利用该锚点集作为中介计算每批数据的图矩阵, 以该图矩阵指导跨模态哈希学习, 从而能极大地降低空间与时间开销; 其次, 提出的可微分哈希层可在网络前向传播时直接由二值编码计算, 在反向传播时亦可产生梯度进行网络更新, 而无需连续值松弛, 从而具有更好的哈希编码效果; 最后, 引入跨模态排序损失, 使得在训练过程中考虑排序结果, 从而提升跨模态检索正确率. 通过在3个通用数据集上与10种跨模态哈希算法进行对比, 验证了提出算法的有效性. 相似文献
8.
哈希编码能够节省存储空间、提高检索效率,已引起广泛关注.提出一种成对相似度迁移哈希方法(pairwise similarity transferring hash,PSTH)用于无监督跨模态检索.对于每个模态,PSTH将可靠的模态内成对相似度迁移到汉明空间,使哈希编码继承原始空间的成对相似度,从而学习各模态数据对应的哈希编码;此外,PSTH重建相似度值而不是相似度关系,使得训练过程可以分批进行;与此同时,为缩小不同模态间的语义鸿沟,PSTH最大化模态间成对相似度.在三个公开数据集上进行了大量对比实验,PSTH取得了SOTA的效果. 相似文献
9.
针对无监督跨模态检索任务中不能充分利用单个模态内的语义关联信息的问题,提出了一种基于图卷积网络的无监督跨模态哈希检索方法。通过图像和文本编码器分别获得两个模态的特征,输入到图卷积网络中挖掘单个模态的内部语义信息,将结果通过哈希编码层进行二值化操作后,与模态间的深度语义关联相似度矩阵进行对比计算损失,不断重构优化生成的二进制编码,直到生成样本对应的健壮哈希表达。实验结果表明,与经典的浅层方法和深度学习方法对比,该方法在多个数据集上的跨模态检索准确率均有明显提升。证明通过图卷积网络能够进一步挖掘模态内的语义信息,所提模型具有更高的准确性和鲁棒性。 相似文献
10.
哈希表示能够节省存储空间,加快检索速度,所以基于哈希表示的跨模态检索已经引起广泛关注。多数有监督的跨模态哈希方法以一种回归或图约束的方式使哈希编码具有语义鉴别性,然而这种方式忽略了哈希函数的语义鉴别性,从而导致新样本不能获得语义保持的哈希编码,限制了检索准确率的提升。为了同时学习具有语义保持的哈希编码和哈希函数,提出一种语义保持哈希方法用于跨模态检索。通过引入两个不同模态的哈希函数,将不同模态空间的样本映射到共同的汉明空间。为使哈希编码和哈希函数均具有较好的语义鉴别性,引入了语义结构图,并结合局部结构保持的思想,将哈希编码和哈希函数的学习融合到同一个框架,使两者同时优化。三个多模态数据集上的大量实验证明了该方法在跨模态检索任务的有效性和优越性。 相似文献
11.
Changsheng Li Qixing Min Yurong Cheng Ye Yuan Guoren Wang 《International Journal of Software and Informatics》2021,11(1):55-67
Recently, unsupervised Hashing has attracted much attention in the machine learning and information retrieval communities, due to its low storage and high search efficiency. Most of existing unsupervised Hashing methods rely on the local semantic structure of the data as the guiding information, requiring to preserve such semantic structure in the Hamming space. Thus, how to precisely represent the local structure of the data and Hashing code s becomes the key point to success. This study proposes a novel Hashing method based on self-supervised learning. Specifically, it is proposed to utilize the contrast learning to acquire a compact and accurate feature representation for each sample, and then a semantic structure matrix can be constructed for representing the similarity between samples. Meanwhile, a new loss function is proposed to preserve the semantic information and improve the discriminative ability in the Hamming space, by the spirit of the instance discrimination method proposed recently. The proposed framework is end-to-end trainable. Extensive experiments on two large-scale image retrieval data sets show that the proposed method can significantly outperform current state-of-the-art methods. 相似文献
12.
Grammar learning has been a bottleneck problem for a long time. In this paper, we propose a method of semantic separator learning, a special case of grammar learning. The method is based on the hypothesis that some classes of words, called semantic separators, split a sentence into several constituents. The semantic separators are represented by words together with their part-of-speech tags and other information so that rich semantic information can be involved. In the method, we first identify the semantic separators with the help of noun phrase boundaries, called subseparators. Next, the argument classes of the separators are learned from corpus by generalizing argument instances in a hypernym space. Finally, in order to evaluate the learned semantic separators, we use them in unsupervised Chinese text parsing. The experiments on a manually labeled test set show that the proposed method outperforms previous methods of unsupervised text parsing. 相似文献
13.
基于局部语义聚类的语义重叠社区发现算法 总被引:2,自引:0,他引:2
语义社会网络是一种包含信息节点及社会关系构成的新型复杂网络,因此以节点邻接关系为挖掘对象的传统社会网络社区发现算法无法有效处理语义社会网络重叠社区发现问题.针对这一问题,提出基于局部语义聚类的语义社会网络重叠社区发现算法,该算法:1)以LDA(latent Dirichlet allocation)模型为语义信息模型,利用Gibbs取样法建立节点语义信息到语义空间的量化映射;2)以节点间语义坐标的相对熵作为节点语义相似度的度量,建立节点相似度矩阵;3)根据社会网络的局部小世界特性,提出语义社会网络的局部社区结构S-fitness模型,并根据S-fitness模型建立了局部语义聚类算法(local semantic clusterm, LSC);4)提出可度量语义社区发现结果的语义模块度模型,并通过实验分析,验证了算法及语义模块度模型的有效性及可行性. 相似文献
14.
为了解决困扰词义及译文消歧的数据稀疏及知识获取问题,提出一种基于Web利用n-gram统计语言模型进行消歧的方法.在提出词汇语义与其n-gram语言模型存在对应关系假设的基础上,首先利用Hownet建立中文歧义词的英文译文与知网DEF的对应关系并得到该DEF下的词汇集合,然后通过搜索引擎在Web上搜索,并以此计算不同DEF中词汇n-gram出现的概率,然后进行消歧决策.在国际语义评测SemEval-2007中的Multilingual Chinese English Lexical Sample Task测试集上的测试表明,该方法的Pmar值为55.9%,比其上该任务参评最好的无指导系统性能高出12.8%. 相似文献
15.
局部因果结构学习是发现和学习给定一个目标变量的直接原因和直接结果而无需学习一个完整因果网络的过程.目前已有算法通常由两个步骤完成:步骤1使用约束类算法利用独立性测试学习目标变量的马尔科夫毯(MB)或父子节点集(PC),但是该步骤由于受到有限的数据样本量等因素影响使得独立性测试存在一定的错误性,而导致该步骤精度通常不是很... 相似文献
16.
针对缺少民族服装语义标签、局部特征繁杂等因素导致少数民族服装图像检索准确率低的问题,提出一种结合标签优化和语义分割的服装图像检索方法.首先基于自定义的少数民族服装通用语义标签和民族服装语义标签,构建视觉风格分析概率模型进行标签优化;然后在全卷积网络结构基础上加入侧分支网络和全连接条件随机场,结合带有标注对和优化语义标签的训练图像对待检图像进行语义分割;最后采用多任务的深度监督哈希算法将语义分割结果哈希映射为二进制码,通过相似度计算对少数民族服装图像进行检索并输出结果.在构建的少数民族服装图像集上的实验结果表明,该方法能够有效地提高少数民族服装图像语义分割和检索的准确率. 相似文献
17.
单目深度估计是计算机视觉领域中的一个基本问题,面片匹配与平面正则化网络(P2Net)是现阶段最先进的无监督单目深度估计方法之一.由于P2Net中深度预测网络所采用的上采样方法为计算过程较为简单的最近邻插值算法,使得预测深度图的生成质量较差.因此,本文基于多种上采样算法构建出残差上采样结构来替换原网络中的上采样层,以获取更多特征信息,提高物体结构的完整性.在NYU-Depth V2数据集上的实验结果表明,基于反卷积算法、双线性插值算法和像素重组算法的改进P2Net网络相较原网络在均方根误差RMSE指标上分别降低了2.25%、2.73%和3.05%.本文的残差上采样结构提高了预测深度图的生成质量,降低了预测误差. 相似文献