共查询到18条相似文献,搜索用时 46 毫秒
1.
针对单频段雷达利用微多普勒特征识别人体动作能力有限的问题,提出了一种基于双频段调频连续波(Frequency Modulation Continuous Wave, FMCW)雷达的人体动作识别方法。首先利用K频段与C频段两部不同频段的FMCW雷达分别对人体不同动作进行探测收集到回波数据,对回波数据进行预处理分别得到距离时间、距离多普勒与微多普勒时频谱图像;然后,运用主成分分析法对图像进行特征提取得到特征向量,对提取到的特征向量进行特征级融合;最后,将融合后的特征作为支持向量机的输入从而实现人体动作识别。采用雷达实测数据的实验结果表明,基于双频段FMCW雷达联合工作的探测方法对五种人体动作的识别正确率为96.25%,优于单个频段FMCW雷达单独工作时的动作识别正确率。 相似文献
2.
3.
本文提出了一种基于双流特征融合的FMCW雷达人体连续动作识别方法。首先对人体动作雷达回波信号进行预处理得到距离时间域图与微多普勒时频谱图,之后分别对两个不同维度的图像进行主成分分析提取对应特征并选取相同时间段的主成分分析结果进行融合得到双流融合特征,最后将双流融合特征输入到Bi-LSTM网络中训练与测试,网络对每个时间段的输入特征产生与之对应的动作类别输出从而实现连续人体动作识别。实验结果表明,当采用双流融合特征作为Bi-LSTM网络的输入时平均识别准确率要高于只采用距离时间特征或微多普勒特征作为网络输入时的平均识别准确率。 相似文献
4.
传统的基于雷达的人体动作识别主要采用微多普勒原理,对原始数据进行处理,生成微多普勒时频图,然后输入到基于分类的深度学习网络中进行识别,只能对单个动作进行识别。本文提出一种FMCW雷达光学字符识别技术的连续动作识别方法,首先对采集的雷达数据采用RDM(Range?Doppler Map)向速度维投影的方法逐帧获取微多普勒时频图,然后将处理得到的时频图输入一个特别定制的,由卷积神经网络、inception_resnet、最大池化层和Bi?LSTM的网络组成,使用联结主义时间分类(CTC)作为损失函数进行训练的网络。实验结果表明该方法对步行、跑步、蹲下、站起、跳跃这5种动作的识别准确率分别高达96.16%,95.34%,88.49%,89.37%,96.72%。对一个时间窗口内多个动作的识别也取得了不错的效果,时间上的识别准确率整体令人满意。 相似文献
5.
6.
针对人体动作识别微多普勒雷达数据量有限的问题,本文提出基于梯度惩罚的沃瑟斯坦生成对抗网络(WGAN-GP)进行雷达数据增强,实现深度卷积神经网络(DCNN)在样本数量较少时可以得到有效训练。首先对人体各种动作的线性调频连续波雷达回波数据进行预处理得到微多普勒时频谱图像,然后采用WGAN-GP进行时频谱图像数据增强,最后利用生成的图像对DCNN进行训练。实验结果表明使用WGAN-GP可以有效解决雷达数据不足的问题,从而提高DCNN人体动作识别准确率。 相似文献
7.
8.
针对采用单一特征进行人体动作识别准确率不高的问题,提出了一种基于调频连续波(Frequency Modulated Continuous Wave, FMCW)雷达的多通道特征融合人体动作识别方法。通过对FMCW雷达回波数据进行预处理,得到人体动作的距离参数与多普勒参数,构建出距离-时间特征谱图和多普勒-时间特征谱图数据集。为了进行人体动作特征的充分提取与精确识别,改进了单通道输入的传统卷积神经网络结构,把部分残差连接结构和跨阶段部分连接结构进行了优化应用至雷达人体动作识别领域,设计出端到端的CSP-FCNN(Cross Stage Partial-Fusion Convolutional Neural Network)多通道融合卷积神经网络。采用公开数据集进行实验,结果表明所提方法有效解决了单一特征动作识别信息量欠缺以及网络提取特征不充分的问题,识别准确率较单一特征识别方法提高了5%以上。 相似文献
9.
10.
无载波超宽带雷达人体动作识别系统的关键优势在于无载波超宽带雷达具有极高的分辨率,能够捕获人体的细微动作变化,并且对于室内复杂环境具有很强的抗干扰能力。但是由于无载波超宽带雷达信号不含载波信息,本身能量集中于极窄的波形内,并且发射信号与回波相关性弱,因此传统的提取信号特征的方法不再适用。针对这一问题,首次搭建无载波超宽带雷达人体动作识别系统,并提出一种新颖的基于主成分分析法(PCA)和离散余弦变换(DCT)相结合的无载波超宽带雷达人体动作识别方法,同时利用改进的网格搜索算法优化支持向量机的参数并验证该方法的优越性。最后,基于实测数据在Matlab平台上进行仿真,对实测的10种不同类型的人体动作进行分类识别,实验结果显示,该方法具有很高的识别率,针对不同的方案识别率均能达到99%以上,对小训练样本具有很强的鲁棒性。 相似文献
11.
针对当前使用调频连续波雷达的呼吸模式分类算法准确度不高的问题,本文提出一种基于一维卷积神经网络(1DCNN)结合长短时记忆(LSTM)网络的多呼吸模式分类方法。方法共分为四步:第一步,对雷达提取的呼吸信号进行预处理;第二步,使用快速傅里叶变换(FFT)与连续小波变换(CWT)提取呼吸信号特征;第三步,根据呼吸特征对五种呼吸模式信号(正常呼吸、呼吸过速、呼吸过缓、呼吸深大、呼吸暂停)打标签制作数据集;第四步,使用数据集训练网络得到模型,并使用新数据测试模型。实验结果表明,此方法分类准确度要比现有使用CNN网络方法高5%左右。 相似文献
12.
研究了六端口测相位的基本方法,给出了六端口的构成,并把六端口作为直接变频接收机应用在FMCW雷达中,给出了其测速测距的原理.六端口雷达与传统的超外差式雷达相比,结构简单,便于集成,成本低.系统流程和模拟测量结果表明六端口雷达测量过程简单,测量精度高. 相似文献
13.
针对调频连续波(FMCW)交通监测雷达车辆目标速度测量和长度估计问题,建立了基于逆合成孔径雷达( ISAR)原理的雷达回波数学模型,分析了待测量目标运动速度与多普勒参数的内在关系,采用基于最大对比度算法(MCA)的多普勒调频斜率的估计方法,能有效提高雷达的车辆监测效能,仿真数据分析以及实测数据的结果均验证了算法的有效性.实验结果表明,最大对比度算法可以准确地估计出移动目标的移动速度并能提供车辆长度信息,为交通监控提供了新的途径和方法. 相似文献
14.
随着自动驾驶概率的热度逐渐升温,大量社会资源倾入自动驾驶领域,而智能驾驶的实现第一步就是感知周围的环境.本文讨论的是基于毫米波雷达的目标追踪方案,通过设置多个收发天线的方式,造成同一连续变频波在接收端的相位差,相位差变化的大小即可捕捉并追踪目标物的方位.对于方位、速度都差不多的探测点即可聚类为单一目标. 相似文献
15.
针对当前使用体征信号进行身份验证准确率低,且特征提取过程复杂的问题,本文在通过毫米波雷达检测生命体征的基础上,提出了一种将纯净的人体胸腔信号(Chest Cavity Signal, CCS)作为样本进行身份验证的方法。首先,对提取到的雷达原始信号进行预处理,消除与实验无关的冗余干扰并提取相位信号。接着对含有干扰的相位信号进行变分模态分解(VMD),提取纯净的心跳与呼吸信号并制作CCS样本。最后将CCS样本送入二维卷积神经网络(2D CNN)中进行训练并验证身份,识别准确率达到了97.5%,实验证明本文提出的方法对于身份验证具有很好的效果。 相似文献
16.
17.
将FMCW雷达检测到的人体生命体征信号,用于预测未来一段时间内人体生命体征信号是否异常,具有明显的应用价值。该方向当前研究主要针对如何进一步降低重构误差、提升生命体征信号的预测精度。为此,本文提出一种自适应变分模态分解?长短期记忆神经网络的生命体征信号预测方法。针对静止状态下的人体,通过雷达采集到的生命体征信号,采用粒子群算法优化变分模态分解VMD的模态分量个数K和惩罚系数α的值,实现自适应选取后用于VMD分解,再将分解后的模态分量进行叠加重构。采用粒子群算法优化长短期记忆网络模型中的网络层数、学习率、正则化系数等3个参数,自适应选取合适的参数组合,将重构后的信号通过优化后的LSTM网络进行预测。实验结果显示本文所提预测方法在10位志愿者的预测结果与原始数据的均方根误差平均值为0.017 188 9,平均绝对误差的平均值为0.007 158,相较于当前其他研究,预测精度上有明显提升。 相似文献