首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用放电等离子烧结技术制备Ti-15Nb-25Zr-2Fe钛合金,研究了烧结温度(800,1 000和1 200℃)对合金致密度、相组成、显微组织及力学性能的影响。结果表明:合金的致密度随烧结温度的升高逐渐升高。800℃烧结的样品主要由β相、α"相、α相和单质Zr组成。1 000℃和1 200℃烧结的样品主要由β相和α"相组成,α"相含量随烧结温度的升高逐渐降低。三种温度烧结的样品中均观察到未固溶的Nb,其含量随烧结温度的升高逐渐降低。随着烧结温度的升高,合金的抗压强度逐渐升高,塑性先升高后降低。  相似文献   

2.
为了改善植入体材料医用钛合金的综合力学性能及耐腐蚀性,采用粉末冶金法制备Ti-29Nb-4Mo-13Ta-9Zr合金。通过X射线衍射、金相显微镜、扫描电镜、压缩试验及动电位极化曲线测试,研究烧结温度对合金的物相组成、显微结构、抗压强度、弹性模量及电化学腐蚀性的影响。结果表明:随着烧结温度的增加,Ti-29Nb-4Mo-13Ta-9Zr合金出现稳定的β相组织,合金的致密度逐渐增加;当烧结温度为1 350℃时,合金的抗压强度为780 MPa,弹性模量相对较低约为66 GPa,综合力学适应性较好,自腐蚀电压较大约为-187.09 mV,自腐蚀电流较小约为11.172μA/cm~2,耐腐蚀性明显提高,成为新型医用植入体的潜力材料。  相似文献   

3.
采用放电等离子烧结技术制备内燃机用Ti-21.5Nb-2Zr-1.2Mo-0.1Y钛合金材料(Ti-21.5Nb), 并对其进行固溶和时效处理, 通过扫描电子显微镜、金相显微镜、X射线衍射仪、万能拉伸测试仪等设备分析试样的微观形貌、组织结构、物相组成以及力学性能。结果表明: 采用等离子旋转电极法制备的预合金球形粉末相对密度较高, 并且未形成孔洞; 烧结试样和固溶试样都是由β相与α相组成, 放电等离子烧结Ti-21.5Nb合金和常规铸锭合金具有相同的相结构变化规律; 合金烧结组织由β等轴晶和一些小尺寸α相构成, 其中β等轴晶的粒径介于30~80μm; 在800 ℃下对烧结试样进行固溶时效处理, 得到的固溶组织主要是由β相构成, 同时在β相中还生成了椭球形α弥散组织; 在500 ℃下对Ti-21.5Nb固溶试样进行时效处理, 在合金基体中析出ω相, 而原先的α相全部消失; 在380 ℃时效处理时, 组织中只存在α相, ω相完全消失; 在800 ℃对Ti-21.5Nb合金进行固溶时效处理可以获得力学性能更优的钛合金材料。  相似文献   

4.
β-Ti型结构的钛基材料在生物材料领域具有广泛的应用前景。本文采用机械合金化法和放电等离子烧结制备β-Ti型Ti-Nb基合金,研究不同Nb,Fe含量对合金显微组织及力学性能的影响。利用扫描电镜(SEM)、X射线衍射仪(XRD)和透射电镜(TEM)等手段分析合金的显微组织变化情况。结果表明:机械合金化过程中,粉末的平均粒度减小,当球磨时间超过60 h时粉末易发生团聚。当球磨转速为300 r/min,球料比为12:1,Ti和Nb的质量分数分别为64%和24%时,球磨100 h后制备的粉体材料中具有一定体积的非晶相。该粉末在1 000℃下通过放电等离子烧结(SPS)制备具有均匀细小的球状晶粒组织的Ti-Nb合金,其强度、伸长率和弹性模量分别为2 180MPa,6.7%和55 GPa。通过控制Nb,Fe的含量,可以促进β-Ti相形成,获得高强度和低杨氏模量的Ti-Nb合金。  相似文献   

5.
为揭示Ti-6Al-7Nb合金随热处理温度的不同,显微组织、力学性能及相组成的变化规律,研究了合金在650℃-1030℃热处理空冷条件下的组织演变,进行室温力学性能测试与XRD分析。结果表明:650℃属于时效温度,热加工得到的原β转变组织中析出细小的α相,合金的强度和弹性模量有所提高。700℃-850℃之间进行热处理,可以获得良好的综合性能,满足相关标准要求。合金弹性模量处于94-100 GPa。950℃-1030℃温度范围内,随着温度的升高,由于二次针状α相的析出,或者生成α"相,呈现强度上升,塑性下降的趋势。650℃、850℃两个温度热处理后,Ti-6Al-7Nb合金的XRD图谱未出现β相的衍射峰,均为α相的衍射峰。1030℃热处理后,α"相具有较强的(002)、(101)衍射峰,其它晶面的衍射峰能量很弱。合金弹性模量达最大值108GPa。通过金相观察,推算Ti-6Al-7Nb合金α+β→β转变的开始温度处于900℃-920℃,终了温度处于1010℃-1030℃。  相似文献   

6.
《钛工业进展》2019,36(5):29-35
为揭示Ti-6Al-7Nb合金显微组织、力学性能及相组成随热处理温度的变化规律,研究了合金在650~1 030℃热处理空冷条件下的组织演变,并进行了室温力学性能测试与XRD分析。结果表明:对于Ti-6Al-7Nb合金,经650℃热处理后,热加工得到的原β转变组织中析出了细小的α相,合金的强度和弹性模量有所提高。在700~850℃之间进行热处理,可以获得良好的综合性能,满足医用钛合金相关标准要求。在950~1 030℃范围内,随着热处理温度的升高,析出二次针状α相或生成α'马氏体相,呈现强度上升、塑性下降的趋势。经650、850℃热处理后,XRD图谱中均为α相的衍射峰,未出现β相的衍射峰。1 030℃热处理后,α'相具有较强的(002)、(101)衍射峰,其他晶面的衍射峰强度很弱,合金弹性模量可达108 GPa。  相似文献   

7.
通过添加石墨烯提高了放电等离子烧结(spark plasma sintering, SPS)制备发动机用耐高温TC11合金的力学性能,研究了不同烧结参数下TC11合金的密度,并观察了合金显微组织,分析了合金力学性能的影响因素。研究结果表明:随着烧结温度增加,试样密度先增加后平稳;提高烧结压力后,试样密度发生了略微上升。随着烧结温度的上升,更多α相转变成了高温β相,形成了相对稳定的β相比例。随着烧结时间的增加,合金室温压缩强度表现为升高的趋势。提高烧结压力后,TC11合金获得了更高的室温与高温力学强度。通过实验最终确定烧结时间5 min、温度900 ℃与压力50 MPa时制备的TC11合金具有最优力学性能。  相似文献   

8.
采用放电等离子烧结(SPS)技术制备内燃机用Ti-22Nb钛合金,对其进行固溶时效处理,并观察其显微组织结构,测试其力学性能.结果表明,采用等离子旋转电极法制备的Ti-22Nb预合金粉末试样致密度高,未观察到孔洞,具有更好的球形度,流动性也更优;烧结态和固溶处理的组织均由β相与α相构成,SPS法制备的Ti-22Nb合金...  相似文献   

9.
低模量β钛合金因具有优良的生物相容性成为目前生物医用植入材料的研究热点。其中,Ti-Nb-TaZr因含无毒元素,且具有强度高、塑性好等优点,在生物材料领域得到广泛的发展。本文采用传统粉末冶金法制备Ti-35Nb-7Zr-5Ta合金,结合显微硬度分布,根据均匀性指数和硬度变化系数分析相分布均匀程度,开展烧结工艺对钛合金微观结构与力学性能的影响研究。结果表明:随烧结温度的提高和烧结时间的延长,基体小孔隙尺寸逐渐减小并消失,相组成及分布发生了相应的变化,Ti-35Nb-7Zr-5Ta合金压缩弹性模量为(4.77±0.48)~(7.4±0.81)GPa,先增大后减小,接近松质骨弹性模量。在模拟体液环境下,烧结态Ti-35Nb-7Zr-5Ta合金阻抗谱呈现半容抗弧特征,相位角在较宽的频域10-1~102Hz之间存在峰值,表现出较高的耐蚀性能,为医用钛合金的生物力学性能研究提供理论基础。  相似文献   

10.
以金属Ti粉和Al粉为原料,采用粉末冶金法制备多孔Ti-15Al合金材料,并研究不同的烧结温度对其物相成分、微观孔隙结构、抗压性能和耐腐蚀性能的影响。结果表明:多孔Ti-15Al合金在高温烧结后,因金属Ti和Al之间发生偏扩散和固相反应而形成了α-Ti和Ti3Al的平衡相,随着烧结温度的升高,合金中孔隙结构逐渐由长条状的贯通孔向近似球状的封闭孔转变,且孔隙率和平均孔径尺寸均呈先增大后减小的变化,在1 300℃烧结后的孔隙率和孔径尺寸最小,最小值分别为11.6%和13.8μm;因材料孔隙结构的转变,导致多孔Ti-15Al合金的抗压强度和耐腐蚀性能均随烧结温度的升高先增大后减小,烧结温度为1 300℃时的抗压强度和耐腐蚀性能最好,最大抗压强度为79 MPa,最小腐蚀电流密度为2.05×10-7 A/cm2。  相似文献   

11.
烧结温度对高钨重合金性能的影响   总被引:8,自引:0,他引:8  
研究了烧结温度对高钨含量W—Ni—Fe重合金显微组织及力学性能的影响。结果表明:钨基重合金的显微组织和力学性能与烧结温度密切相关。合适的烧结温度可以使合金具有良好的显微组织和优良的力学性能,而烧结温度较低时,合金中的粘结相分布不均匀,烧结温度较高时,合金中的钨颗粒粗大,两者都会显著降低其力学性能。  相似文献   

12.
研究了Ti—13Nb—13Zr合金在β相区和(α β)两相区固溶和时效处理后其合金力学性能及组织变化规律。分析发现在β相区固溶的合金,水冷时生成针状马氏体α′,空冷时生成亚稳定β相和少量αp,在(α β)两相区固溶生成β转和αp。在β相区和(α β)两相区固溶试样经时效后,晶粒内部主要析出点状和棒状αs。在750℃/1h固溶(WQ)和低温510℃/6h时效的合金抗拉强度高、塑性较高、弹性模量低,可以满足人体植入要求。  相似文献   

13.
采用无细胞毒性的合金元素Nb、Zr和Mo,应用d-电子合金设计方法设计了两种理论上具有较低弹性模量的新型亚稳B钛合金Ti35Nb8Zr2Mo和Ti20Nb15Zr10Mo。利用WK-Ⅱ型非自耗真空电弧凝壳炉制备了这两种合金,研究了这两种合金的基本力学性能。X-射线分析结果表明设计的两种合金处于固溶态时均由单一的β组成的,符合本研究设计β钛合金的要求。设计的两种合金经不同热处理后,Ti35Nb8Zr2Mo的最低压缩模量为17.7Gpa,Ti20Nb15Zr10Mo的最低压缩模量为14.7GPa,均低于Ti6A14V(锻态)的压缩模量21.8GPa。  相似文献   

14.
和熔炼铸造法相比,采用粉末冶金法制备钛材,可以避免引入杂质,提高原料利用率。本文探讨微波烧结与传统烧结对纯钛组织及性能的影响,结果表明,在1200℃保温2 h传统烧结得到等轴α-Ti组织,密度为4.33 g·cm-3,相对密度为96.06%,硬度为HV 260,抗压强度为1309 MPa,断面膨胀率为10.63%,呈典型的解理状脆性断裂;在1200℃保温15 min微波烧结得到等轴的α-Ti与条状β-Ti组织,密度为4.30 g·cm-3,相对密度为95.45%,硬度为HV 311,抗压强度为1175 MPa,断面膨胀率为18.89%,展现出一定的塑性,呈准解理状脆性断裂。  相似文献   

15.
利用双层辉光等离子表面渗金属技术(DGPSAT)对TC11进行表面渗Nb处理,用SEM和XRD、EDS以及纳米压入仪分析渗Nb合金层的显微组织、化学成分、相组成及其显微硬度与弹性模量。结果表明:渗层Nb元素呈梯度分布;渗层相主要由Nb在β-Ti中形成的置换固溶体与Al Nb2相组成;渗层有效厚度达到14μm,TC11渗Nb后其纳米硬度提高了1.9倍,而弹性模量相对于基体略有降低。  相似文献   

16.
粉末注射成形钛铝烧结工艺研究   总被引:1,自引:0,他引:1  
利用Ti-47.5Al-2.5V-1.0Cr(%)气雾化预合金粉末为原料, 采用注射成形工艺制备了TiAl合金材料, 研究了TiAl合金烧结工艺以及烧结工艺对烧结体显微组织、密度和性能的影响. 结果表明: 烧结体在超固相线液相区烧结得到密度最高. 在1450 ℃保温30 min, 烧结体的相对密度达到95%, 抗压强度为2105 Mpa, 压缩率达到30.9%, 接近铸态合金力学性能. 烧结体在α γ相区和α相区保温1 h, 相对密度分别为73%和85%. 在1300~1400 ℃, 随着片层团的增加, 烧结体组织由双态组织逐渐变为全片层组织. 在超固相液相区, 随着γ相的减少, 烧结体组织由近片层组织逐渐转变为全片层组织.  相似文献   

17.
采用粉末冶金技术制备W-6Ni-4Co-2X(X=Nb、Ta、Hf、Mo、Ti)合金,研究添加Nb、Ta、Hf、Mo和Ti元素对W-6Ni-4Co合金组织和力学性能的影响。结果表明:W-6Ni-4Co-2X合金的显微组织主要由基体相(W相)和黏结相组成,且黏结相的种类和含量与烧结过程W相在黏结相(Ni, Co)中的溶解析出有关。W-6Ni-4Co-2Ta、W-6Ni-4Co-2Hf合金组织W晶粒呈不规则多边形,W-6Ni-4Co-2Nb、W-6Ni-4Co-2Ti合金组织W晶粒呈椭球形,并分散分布在黏结相中。W-6Ni-4Co-2Ta合金组织均匀、晶粒细小、W/黏结相界面结合良好,使其硬度、抗弯强度和屈服强度较高。W-6Ni-4Co-2Mo合金组织W晶粒呈网状排列,连续W骨架结构与延性黏结相协同降低了合金的应变硬化程度,使其具有较好的抗应变硬化性能。因此,向W-6Ni-4Co合金中添加合适的过渡金属元素是提高其力学性能的一种有效途径。  相似文献   

18.
采用真空熔炼法制备出新型医用Ti-14Mo-2.1Ta-0.9Nb-7Zr合金,经800℃保温2 h的固溶处理后,在450和500℃下分别时效2,4,8,12 h。通过金相显微镜(OM)和压缩力学性能测试的方法,研究了不同时效温度、时效时间两个工艺参数对Ti-14Mo-2.1Ta-0.9Nb-7Zr合金显微组织、抗压强度和弹性模量的影响,利用X射线衍射仪(XRD)及扫描电镜(SEM)对合金物相结构和显微组织进行观察并在能谱仪(EDS)上进行元素成分分析。结果表明:在450和500℃下进行相同时间时效,较高温度下抗压强度较低,弹性模量较高。在相同时效温度下,随时效时间的延长,抗压强度先下降再上升而后又下降,而弹性模量呈先上升再下降又上升的趋势。在800℃×2 h的固溶处理后时效450℃×8 h,抗压强度达到2070 MPa,弹性模量降到37.93 GPa,基本符合临床上硬组织植入物的力学性能要求。  相似文献   

19.
生物医用Ti-6Al-7Nb合金高温变形行为研究   总被引:2,自引:0,他引:2  
金哲  张万明 《稀有金属》2012,36(2):218-223
为了研究用于外科植入生物材料Ti-6Al-7Nb合金的热变形行为,利用Gleeble 2000热模拟实验机对Ti-6Al-7Nb合金在750~900℃温度范围和0.001~10.000 s-1应变速率范围内进行等温热压缩实验,试验在氩气保护下进行,采用金相显微镜和透射电镜观察热变形后的组织;通过计算变形激活能分析Ti-6Al-7Nb合金在热压缩过程中的变形机制。结果表明:流变应力在经历加工硬化阶段后均表现出流变软化现象,在较低应变速率ε=0.001~0.100 s-1时,材料的软化主要受α相动态再结晶影响;而在较高应变速率ε=1~10 s-1时,材料基本不发生再结晶,其软化是由于钛合金在变形过程中的绝热效应造成的。通过Arrhenius方程计算出合金在750,800,850和900℃下的变形激活能分别为209.25,196.01,194.01和130.40 kJ.mol-1;在750~850℃下的激活能接近于α-Ti的自扩散激活能(200 kJ.mol-1),表明在750~850℃的变形由α-Ti自扩散参与的动态再结晶控制;在900℃下激活能略低于β-Ti的自扩散激活能(160 kJ.mol-1),说明在900℃下的变形机制由β相的动态回复控制。综合考虑变形行为与组织细化因素,温度在750~850℃,变形速率在0.01~0.10 s-1范围为良性热加工区域。  相似文献   

20.
通过合金成分设计和铜模铸造开发出了不含高生物毒性元素Ni且具有高强度和良好室温塑性的Ti_(64)Cu_(25-x)Fe_(10)Si_1Nb_x(x=1,3,5,7;%,原子分数)树枝晶-超细晶结构复合材料,并研究了Nb元素含量对该系合金微观结构和力学性能的影响。研究结果表明, Ti_(64)Cu_(25-x)Fe_(10)Si_1Nb_x(x=1, 3, 5, 7)合金由β-Ti相、亚微米级CuTi_2和CuTi_3相组成。随着Nb元素含量的增加,合金中β-Ti相的体积分数增大,且当Nb含量为5%和7%时,β-Ti相呈枝晶状且分布较均匀。该系合金表现出高压缩断裂强度和硬度,分别为2125~2230 MPa和HV 505~520;压缩塑性应变为3.4%~14.3%,随着Nb含量的提高而增大。因此,通过Nb元素合金化能够有效调控Ti-Cu-Fe-Si-Nb系合金的相组成和力学性能,所开发的Ti-Cu-Fe-Si-Nb合金具有作为手术器械材料在生物医用领域应用的前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号